PreScissionProtease(PSP)是一种在蛋白质纯化和分析中使用的酶,具有以下特点:1.**特异性识别**:PSP能在低温(4°C)下特异性识别八肽序列Leu-Glu-Val-Leu-Phe-Gln-Gly-Pro或五肽序列Leu-Phe-Gln-Gly-Pro,并在Gln和Gly之间进行酶切。2.**应用**:PSP常用于去除融合蛋白中的GlutathioneS-transferase(GST)、His等标签,有助于纯化目的蛋白。3.**纯度高**:PSP的纯度达到95%以上,确保了实验的准确性和重复性。4.**稳定性好**:PSP在含有50%甘油的储存缓冲液中,-80℃长期储存,有效期2年;小量分装-20℃保存,有效期6个月。5.**酶活定义**:在5℃条件下反应16小时,能够切割100μg的GST标签蛋白达90%以上所需的酶量定义为一个活性单位。6.**兼容性强**:PSP的酶切体系中可以兼容1%TritonX-100、Tween-20或NP-40,10mMEDTA和500mMNaCl。7.**注意事项**:某些化合物如100mMZnCl2、4mMAEBSF和100μMChymostatin会抑制PSP的酶活性50%以上。8.**优化酶切效率**:建议进行预实验摸索实验浓度,实际操作中,建议酶用量1:25-1:100U/μg融合蛋白。在这个过程中,E1使用ATP的能量,在自身的活性位点的半胱氨酸残基与泛素C末端的甘氨酸残基形成硫酯键。Recombinant Mouse CD19 Protein,His Tag
通过EndoS糖苷内切酶S进行糖蛋白的糖链结构分析通常涉及以下步骤:1.**样本准备**:首先,需要获得糖蛋白的纯化样本,以确保分析的准确性。2.**酶的准备**:准备适量的EndoS糖苷内切酶S,根据实验需要选择合适的浓度和缓冲体系。3.**酶切反应**:-将糖蛋白样本与EndoS酶混合,在适宜的条件下(如pH、温度等)进行酶切反应。-反应时间根据EndoS的活性和所需的切割程度来确定。4.**终止反应**:在达到预期的酶切时间后,通过加热或添加适当的缓冲液来终止酶切反应。5.**分离纯化**:-使用色谱技术(如凝胶渗透色谱、离子交换色谱等)将酶切后的糖蛋白和释放的糖链分离。-纯化过程可能需要多步色谱以确保糖链的纯度。6.**糖链分析**:-对分离得到的糖链进行进一步的结构分析,可能包括质谱分析、核磁共振(NMR)波谱分析等。-可以使用高分辨率的质谱技术,如MALDI-TOF或ESI-MS,来确定糖链的精确质量。7.**序列鉴定**:通过与已知糖链数据库比对,确定糖链的序列和结构。8.**功能分析**:研究酶切后的糖蛋白和释放的糖链对生物活性的影响,如结合特性、免疫原性等。9.**数据分析**:收集所有数据并进行综合分析,以揭示糖链结构与功能之间的关系。
N末端His标签的泛素蛋白(RecombinantHumanUbiquitinProteinTagged-HisTag,UB)是一种经过遗传工程改造,在其N末端融合了His标签的泛素蛋白。以下是这种蛋白的一些特点:1.**His标签**:N末端His标签是一种常见的融合标签,用于提高蛋白质的可溶性和便于通过亲和层析进行纯化。His标签通常由6到10个组氨酸(His)组成。2.**重组表达**:这种泛素蛋白通常在大肠杆菌(E.coli)或其他宿主细胞中通过重组DNA技术表达。3.**高度保守**:泛素蛋白是一个76个氨基酸残基的多肽,在真核生物中高度保守。4.**分子量**:由于N末端添加了His标签,重组泛素蛋白的分子量会略大于天然泛素(约8.5kDa)。5.**纯度**:重组泛素蛋白通常具有高纯度(>95%bySDS-PAGE),适合用于各种生物化学和分子生物学实验。6.**溶解性**:His标签的添加可以提高蛋白质在水溶液中的溶解性,便于实验操作。7.**稳定性**:冻干粉形式的重组泛素蛋白在-25~-15℃保存,具有较长的有效期,通常为一年。8.**应用广**:N末端His标签的泛素蛋白可用于多种实验,包括蛋白质泛素化、E3泛素连接酶活性测定、蛋白质相互作用研究等。
重组Exendin-4是一种基于Exendin-4的重组蛋白,Exendin-4是一种从墨西哥蜥蜴(Gilamonster)的毒液中分离出来的39个氨基酸的多肽。它与胰高的血糖素样肽-1(GLP-1)具有53%的序列同源性,并与相同的膜受体相互作用。重组Exendin-4在体内增强依赖葡萄糖的胰岛素分泌,抑制不适当的高胰高的血糖素分泌,并减慢胃排空。它还在体外和动物模型中促进β细胞增殖和新生。重组Exendin-4是通过大肠杆菌表达的合成DNA序列编码的39个氨基酸的Exendin-4。重组Exendin-4的特点包括:-分子量约为4.2kDa,是一个非糖基化的单一多肽链,包含39个氨基酸。-具有调节血糖水平、减少胰岛素抵抗、降低胰高的血糖素、降低糖化血红蛋白(HbA1c)和刺激β细胞生长以促进胰岛素产生等多种生物活性。-通常以冻干粉的形式提供,需要在无菌条件下用无菌蒸馏水或含有0.1%BSA的水溶液复溶。-纯度高于96%,通过SDS-PAGE和HPLC分析确定。-内毒的素含量低于10EU/mg,通过LAL方法测定。在实验中,可以通过以下方法来优化重组Exendin-4的荧光特性:1.选择合适的激发和发射波长。2.优化激发和发射滤光片。3.评估荧光量子产率。4.调整缓冲液条件,包括pH值和离子强度。5.控制温度和氧浓度。One Step RT-qPCR SYBR Green Kit 是一种用于实时荧光定量PCR的试剂盒,它结合了反转录和PCR扩增步骤。
在基因编辑中,除了NLS-Cas9-EGFPNuclease,还有多种技术可以提高编辑的特异性,这些技术包括:1.**高保真Cas9变体**:通过工程化改造Cas9蛋白,例如使用SpCas9-HF1或eSpCas9等高保真变体,可以减少脱靶效应,提高特异性。2.**碱基编辑器(BaseEditors)**:这类编辑器可以在不产生DNA双链断裂的情况下直接在特定位置进行单个碱基的转换,从而减少非目标编辑。3.**引导编辑器(PrimeEditors)**:由哈佛大学刘如谦教授团队开发的引导编辑器可以在不依赖DNA双链断裂和同源定向修复的情况下,实现精细的基因组编辑。4.**CRISPRi和CRISPRa**:这两种技术分别用于抑制或激起特定基因的表达,而不切割DNA,从而减少了脱靶风险。5.**新型CRISPR系统**:例如CRISPR/Cas12j和CRISPR/CasΦ,这些系统可能具有不同的PAM序列要求和更高的特异性。6.**AI辅助设计**:利用人工智能预测和优化sgRNA的设计,以减少脱靶效应。7.**优化递送系统**:改进CRISPR组分的递送方法,例如使用核糖核的蛋白(RNP)复合物,可以提高编辑效率和特异性。8.转座子编辑系统:利用转座子进行基因组编辑,可以在不依赖DNA双链断裂的情况下实现大片段DNA序列的插入。
Pfu DNA Polymerase 具有较高的保真度,能够在DNA合成过程中减少错误掺入的碱基,降低非目标突变的发生率。Recombinant Mouse CD19 Protein,His Tag
重组人血清白蛋白(rHSA)在药物载体应用中提高药物稳定性和靶向性的机制主要包括以下几点:1.**延长半衰期**:通过与rHSA融合,可以延长药物分子在体内的循环时间。例如,阿必鲁肽(Tanzeum)是GLP-1与HSA的融合蛋白,其半衰期可延长至5天,每周给药一次即可。2.**提高稳定性**:rHSA作为载体,可以保护药物分子不受体内酶解和其他降解因素的破坏,从而提高药物的稳定性。例如,FGF21与HSA融合后,其体外稳定性提升,抗胰蛋白酶降解能力和高温条件下的稳定性增加。3.**改善药代动力学**:rHSA融合蛋白能够改善药物的药代动力学特性,如改变药物的分布和代谢,减少肾脏的损失,从而提高药物在体内的浓度和疗效。4.**增强靶向性**:rHSA可以通过其天然的生物学特性,如与特定受体的结合,增强药物对特定组织或细胞的靶向性。例如,rHSA可以通过其与FcRn受体的结合,实现对瘤组织的靶向性。5.**降低免疫原性**:rHSA作为一种内源性蛋白质,具有较低的免疫原性,可以减少药物引起的免疫反应,提高药物的安全性和耐受性。Recombinant Mouse CD19 Protein,His Tag
磁珠法在基因克隆中的应用主要体现在以下几个方面:1.**质粒DNA的提取**:磁珠法可以用于从细菌细胞中提取质粒DNA,这对于质粒的克隆和表达至关重要。通过磁珠法提取的质粒DNA纯度高,适合用于后续的酶切、连接、转化等分子克隆步骤。2.**基因组DNA的提取**:磁珠法可以用于从各种生物样本中提取基因组DNA,这对于基因组的克隆和分析非常重要。提取的基因组DNA可以用于PCR扩增、基因表达分析、基因突变检测等。3.**mRNA的提取和纯化**:在mRNA克隆中,磁珠法可以用于提取和纯化mRNA,这对于cDNA的合成和基因表达分析非常关键。磁珠法提取的mRNA纯度高,可以用于后续的cDNA合成和...