N末端His标签的泛素蛋白(RecombinantHumanUbiquitinProteinTagged-HisTag,UB)是一种经过遗传工程改造,在其N末端融合了His标签的泛素蛋白。以下是这种蛋白的一些特点:1.**His标签**:N末端His标签是一种常见的融合标签,用于提高蛋白质的可溶性和便于通过亲和层析进行纯化。His标签通常由6到10个组氨酸(His)组成。2.**重组表达**:这种泛素蛋白通常在大肠杆菌(E.coli)或其他宿主细胞中通过重组DNA技术表达。3.**高度保守**:泛素蛋白是一个76个氨基酸残基的多肽,在真核生物中高度保守。4.**分子量**:由于N末端添加了His标签,重组泛素蛋白的分子量会略大于天然泛素(约8.5kDa)。5.**纯度**:重组泛素蛋白通常具有高纯度(>95%bySDS-PAGE),适合用于各种生物化学和分子生物学实验。6.**溶解性**:His标签的添加可以提高蛋白质在水溶液中的溶解性,便于实验操作。7.**稳定性**:冻干粉形式的重组泛素蛋白在-25~-15℃保存,具有较长的有效期,通常为一年。8.**应用广**:N末端His标签的泛素蛋白可用于多种实验,包括蛋白质泛素化、E3泛素连接酶活性测定、蛋白质相互作用研究等。通过SDS-PAGE、Western blot、质谱等方法验证蛋白的纯度和分子量。通过活性测试评估蛋白的生物活性。Recombinant Cynomolgus BCAM Protein,His Tag
重组增强型绿色荧光蛋白(RecombinantEnhancedGreenFluorescentProtein,EGFP)是一种用于生物科学研究的工具。以下是重组EGFP的一些特点和应用:1.**高荧光强度**:EGFP比野生型GFP具有更强的荧光,这使得它在成像和检测时更为敏感和有效。2.**改进的折叠效率**:EGFP在生理温度(如37℃)下的折叠效率更高,这有助于在细胞内快速形成成熟的荧光蛋白。3.**单一激发峰**:与野生型GFP相比,EGFP具有单一的激发峰,这简化了成像条件的设置,并提高了信号的稳定性。4.**适合多种生物系统**:EGFP可以用于多种生物系统,包括细菌、酵母、植物和哺乳动物细胞。5.**多功能性**:EGFP可以作为报告基因用于基因表达分析,也可以作为融合标签用于蛋白质定位和动态研究。6.**非糖基化**:在大肠杆菌中表达的重组EGFP是非糖基化的,这有助于减少翻译后修饰的复杂性。7.**纯度高**:重组EGFP通常具有高纯度,适合用于各种生物化学和分子生物学实验。8.**稳定性**:EGFP的荧光稳定性好,适合长时间观察和成像。9.**分子量**:重组EGFP的分子量约为26.9kDa,由239个氨基酸构成。Recombinant Human CD46 Protein,His Tag许多Probe qPCR Mix (2×)产品采用热启动DNA聚合酶,能减少非特异性扩增,提高反应的灵敏度和特异性 。
EndoS,即糖苷内切酶S(Endo-S),是一种具有高度特异性的酶,它在生物化学研究中有着重要应用,尤其是在糖蛋白和抗体药物偶联物(ADCs)的研究中。以下是EndoS的一些关键特点:1.**特异性**:EndoS能够特异性地识别并切割N-连接糖链的壳二糖结构,即在N-乙酰葡糖胺(GlcNAc)和天冬酰胺之间的连接处进行切割。2.**应用**:在制备糖链定点ADC化合物中,EndoS被用于将小分子细胞毒药物“一步”定点连接到抗体糖基化位点,提供了一种重要的技术方法。3.**兼容性**:EndoS对多样化的LacNAc修饰显示出良好的兼容性,可以接受不同生物正交基团、荧光基团等衍生物作为底物,实现抗体糖基化修饰。4.**活性**:EndoS的活性对多肽没有严格的要求,可以接受蛋白质、肽、天门冬酰胺或游离聚糖作为底物。但是,对于具有三、四个支链的唾液酸化及去唾液酸化的聚糖,EndoS没有活性。5.**产品形式**:EndoS通常以带有His标签的形式存在,便于从反应中去除,这在实验操作中提供了便利。6.**研究进展**:EndoS在去糖基化方法研究中是一个重要的工具,特别是在研究糖蛋白的多肽部分和多糖部分的结构和功能时。
NLS-Cas9-EGFPNuclease在基因编辑中提高特异性的策略包括:1.**核定位信号(NLS)**:NLS有助于Cas9蛋白快速定位到细胞核,这可以减少Cas9在细胞质中的非特异性结合,从而降低脱靶效应。2.**瞬时表达**:由于NLS-Cas9-EGFPNuclease是作为蛋白质直接递送的,它在细胞内不会经历长时间的表达,这限制了Cas9的活性时间窗口,减少了长时间存在导致的脱靶风险。3.**优化gRNA设计**:精心设计的gRNA可以提高特异性,通过选择与目标基因特异性匹配的gRNA,可以减少Cas9在非目标位点的切割。4.**使用高保真Cas9变体**:一些Cas9变体被设计为具有更高的特异性,通过突变Cas9蛋白的某些氨基酸,可以降低其在非目标位点的活性。5.**荧光标记(EGFP)**:EGFP标签不仅用于追踪和分选,还可以帮助研究者通过荧光激起细胞分选(FACS)富集成功编辑的细胞,从而提高编辑特异性。6.**体外验证**:在实际进行体内基因编辑之前,可以通过体外DNA切割实验验证gRNA的特异性和效率,筛选出比较好的gRNA。7.**使用PAM序列优化**:通过选择具有限制性PAM序列的gRNA,可以减少可能的脱靶位点。
重组的化脓性链球菌Cas9蛋白(SpCas9)是一种用于基因组编辑的核酸酶。它是CRISPR-Cas系统的一部分,该系统是一种细菌和古菌的适应性免疫防御机制,能够识别并切割入侵的外源核酸。Cas9蛋白在CRISPR系统中起到关键作用,它能够识别特定的原间隔子相邻基序(PAM),在引导RNA(gRNA)的引导下与目标DNA结合并进行切割。SpCas9蛋白由1053个氨基酸组成,相对较小的体积使其便于在体内递送,因此它在多种生物中都能进行有效的基因组编辑。为了提高SpCas9的表达量和溶解度,研究人员采用了多种策略,例如使用GB1促溶标签和多重启动子策略,这些策略可以显著提高蛋白的产量和活性,同时保持其功能活性不受影响。在基因编辑过程中,SpCas9与gRNA形成稳定的核糖核的蛋白(RNP)复合物,通过gRNA与基因组DNA的序列匹配来识别目标位点,并在距离NGGPAM序列3个碱基以内的位置切割DNA。为了增强SpCas9的基因组编辑效率,研究人员还开发了嵌合融合蛋白,例如与5’至3’核酸外切酶重组J(RecJ)或GFP融合的SpyCas9蛋白,这些嵌合蛋白可以显著提高靶向基因编辑效率,同时保持较低的脱靶效应。
GPRC5D蛋白在宿主细胞内通过自组装形成VLP。这一步骤通常在细胞内发生,以提高VLP的产量和质量。Recombinant Cynomolgus BCAM Protein,His Tag
检测重组EGFP(增强型绿色荧光蛋白)的活性和稳定性通常涉及一系列生物化学和分子生物学实验方法。以下是一些常用的检测方法:1.**SDS-PAGE电泳**:-通过SDS-PAGE电泳分析EGFP的纯度和分子量。-观察是否有蛋白质降解或聚合的迹象。2.**WesternBlot**:-使用特异性的GFP抗体进行Westernblot,以检测EGFP蛋白的存在和大小。-可以评估EGFP的表达水平和纯度。3.**荧光光谱分析**:-使用荧光光谱仪测量EGFP的激发和发射光谱。-评估荧光强度和比较大激发/发射波长,以确定其荧光特性。4.**流式细胞仪分析**:-如果EGFP融合蛋白表达在细胞中,可以使用流式细胞仪分析细胞群体的荧光强度。-这有助于评估EGFP的表达水平和细胞内分布。5.**荧光显微镜观察**:-在荧光显微镜下观察EGFP的亚细胞定位和表达模式。-通过时间序列成像,可以评估EGFP在活细胞中的动态变化和稳定性。6.**热稳定性分析**:-通过逐渐升高温度并测量荧光强度的变化,可以评估EGFP的热稳定性。-热稳定性差的EGFP可能会在高温下迅速失去活性。7.**光稳定性测试(光漂白实验)**:-通过持续光照并监测荧光强度的下降(光漂白),可以评估EGFP的光稳定性。Recombinant Cynomolgus BCAM Protein,His Tag
磁珠法在基因克隆中的应用主要体现在以下几个方面:1.**质粒DNA的提取**:磁珠法可以用于从细菌细胞中提取质粒DNA,这对于质粒的克隆和表达至关重要。通过磁珠法提取的质粒DNA纯度高,适合用于后续的酶切、连接、转化等分子克隆步骤。2.**基因组DNA的提取**:磁珠法可以用于从各种生物样本中提取基因组DNA,这对于基因组的克隆和分析非常重要。提取的基因组DNA可以用于PCR扩增、基因表达分析、基因突变检测等。3.**mRNA的提取和纯化**:在mRNA克隆中,磁珠法可以用于提取和纯化mRNA,这对于cDNA的合成和基因表达分析非常关键。磁珠法提取的mRNA纯度高,可以用于后续的cDNA合成和...