随着精密、 超精密加工技术的发展,材料在纳米尺度下的力学特性引起了人们的极大关注研究。而传统的硬度测量方法只适于宏观条件下的研究和应用,无法用于测量压痕深度为纳米级或亚微米级的硬度( 即所谓纳米硬度,nano- hardness) 。近年来,测量纳米硬度一般采用新兴的纳米压痕技术 (nano-indentation),由于采用纳米压痕技术可以在极小的尺寸范围内测试材料的力学性能,除了塑性性质外,还可反映材料的弹性性质,因此得到了越来越普遍的应用。利用纳米力学测试,研究人员可揭示材料内部缺陷、应力分布等关键信息。江西化工纳米力学测试原理
纵观纳米测量技术发展的历程,它的研究主要向两个方向发展:一是在传统的测量方法基础上,应用先进的测试仪器解决应用物理和微细加工中的纳米测量问题,分析各种测试技术,提出改进的措施或新的测试方法;二是发展建立在新概念基础上的测量技术,利用微观物理、量子物理中较新的研究成果,将其应用于测量系统中,它将成为未来纳米测量的发展趋向。但纳米测量中也存在一些问题限制了它的发展。建立相应的纳米测量环境一直是实现纳米测量亟待解决的问题之一,而且在不同的测量方法中需要的纳米测量环境也是不同的。深圳高校纳米力学测试实验室通过纳米力学测试,可以测量纳米材料的弹性模量、硬度和断裂韧性等力学性能。
研究液相环境下的流体载荷对探针振动产生的影响可以将AFAM 定量化测试应用范围扩展至液相环境。液相环境下增加的流体质量载荷和流体阻尼使探针振动的共振频率和品质因子都较大程度上减小。Parlak 等采用简单的解析模型考虑流体质量载荷和流体阻尼效应,可以在液相环境下从探针的接触共振频率导出针尖样品的接触刚度值。Tung 等通过严格的理论推导,提出通过重构流体动力学函数的方法,将流体惯性载荷效应进行分离。此方法不需要预先知道探针的几何尺寸及材料特性,也不需要了解周围流体的力学性能。
量子效应决定物理系统内个别原子间的相互作用力。在纳米力学中用一些原子间势能的平均数学模型引入量子效应。在经典多体动力学内加入原子间势能提供了纳米结构和原子尺寸决定性的力学模型。数据方法求解这些模型称为分子动力学(MD),有时称为分子力学。非决定性数字近似包括蒙特卡罗,动力蒙卡罗和其它方法。现代的数字工具也包括交叉通用近似,允许同时和连续利用原子尺寸的模型。发展这些复杂的模型是另一应用力学的研究课题。利用大数据和人工智能技术,优化纳米力学测试结果分析,提升研究效率。
对纳米元器件的电测量——电压、电阻和电流——都带来了一些特有的困难,而且本身容易产生误差。研发涉及量子水平上的材料与元器件,这也给人们的电学测量工作带来了种种限制。在任何测量中,灵敏度的理论极限是由电路中的电阻所产生的噪声来决定的。电压噪声[1]与电阻的方根、带宽和一定温度成正比。高的源电阻限制了电压测量的理论灵敏度[2]。虽然完全可能在源电阻抗为1W的情况下对1mV的信号进行测量,但在一个太欧姆的信号源上测量同样的1mV的信号是现实的。纳米力学测试的结果对于预测纳米材料在实际应用中的表现具有重要参考价值。江西化工纳米力学测试原理
发展高精度、高稳定性纳米力学测试设备,是当前科研工作的重要任务。江西化工纳米力学测试原理
原位纳米力学测试系统(nanoindentation,instrumented-indentation testing,depth-sensing indentation,continuous-recording indentation,ultra low load indentation)是一类先进的材料表面力学性能测试仪器。该类仪器装有高分辨率的致动器和传感器,可以控制和监测压头在材料中的压入和退出,能提供高分辨率连续载荷和位移的测量。包括压痕硬度和划痕硬度两种工作模式,主要应用于测试各种薄膜(包括厚度小于100纳米的超薄膜、多层复合膜、抗磨损膜、润滑膜、高分子聚合物膜、生物膜等)、多相复合材料的基体本构和界面、金属阵列复合材料、类金刚石碳涂层(DLC)、半导体材料、MEMS、生物医学样品(包括骨、牙齿、血管等)和生物材料、等在nano水平上的力学特性,还可以进行纳米机械加工。通过探针压痕或划痕来获得材料微区的硬度、弹性模量、摩擦系数、磨损率、断裂刚度、失效、蠕变、应力释放、分层、粘附力(结合力)、存储模量、损失模量等力学数据。江西化工纳米力学测试原理