蛋白质的降:对于细胞来说,蛋白质降解有多种用途,包括去除分泌蛋白的N末端信号肽,对前体蛋白进行剪切以产生“成熟”蛋白等。细胞不需要的或受到损伤的非跨膜蛋白质一般由蛋白酶体来进行降解,而真核生物的跨膜蛋白则通过内体运送到溶酶体(动物细胞)或液泡(酵母)中进行降解[22]。降解所生成的氨基酸分子可以被用于合成新的蛋白质。一些蛋白质可以发生自降解。此外,细胞中存在的大量蛋白酶(特别是溶酶体中),可以对外来的蛋白质进行降解,这也是一种细胞自我保护的机制。原核细胞中每种mRNA分子常带有多个功能相关蛋白质的编码信息。31127-54-5
蛋白质是生物体所必需的生物大分子物质,是细胞中含量较丰富,功能较多的大分子物质,在各种生命活动过程中发挥重要作用,是维持生命的物质基础。粮农组织(FAO)表示,成年人每天摄取蛋白质应在75 g以上,而世界人均水平只有68.8 g,我国目前平均水平光60 g[1]。蛋白质摄入不足主要是由于蛋白质的很全摄入量不足以及摄取的蛋白质中的氨基酸的比例失衡导致,目前解决蛋白质摄入不足的首要方法是开辟新型蛋白质来源,并通过合理的膳食搭配来解决氨基酸比例失衡。动物蛋白虽然是质量的蛋白源,但其转化途径要比植物蛋白质的提取需要更多的经济费用及更长的时间周期,而植物蛋白质的利用成本相对较低,因此加工利用植物蛋白质是我国目前主要的解决蛋白质供应不足的措施。848821-58-9氨基酸的作用与功效:有效阻断外界有害物质对皮肤的侵害。
肽键形成:不是所有的肽键都是这样形成的。在少数情况下,肽是由特定的酶合成的。例如,三肽谷胱甘肽是细胞抵御氧化应激的重要组成部分。这种肽由游离氨基酸分两步合成。在一步中,γ-谷氨酰半胱氨酸合成酶通过在谷氨酸的侧链羧基(该侧链的γ碳)和半胱氨酸的氨基之间形成的肽键缩合半胱氨酸和谷氨酸。该二肽然后通过谷胱甘肽合成酶与甘氨酸缩合形成谷胱甘肽。在化学中,肽是通过多种反应合成的。固相多肽合成中较常用的方法之一是用氨基酸的芳香肟衍生物作为活化单元。这些都是按顺序添加到生长的肽链上的,该肽链连接到固体树脂载体上。通过改变氨基酸的类型和顺序(使用组合化学)可以方便地合成大量不同的肽,这使得肽合成可用于创建肽库以用于通过高通量筛选发现药物。
蛋白质:蛋白质(protein)由不同的L型α-氨基酸所形成的线性聚合物,是一种生物大分子。蛋白质是组成人体一切细胞、组织的重要成分。机体所有重要的组成部分都需要有蛋白质的参与,较重要的还是其与生命现象有关。蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者,没有蛋白质就没有生命。机体中的每一个细胞和所有重要组成部分都有蛋白质参与,蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸(Amino acid)按不同比例组合而成的,并在体内不断进行代谢与更新。氨基酸的理化性质:由遗传密码直接编码的20种氨基酸可以根据它们的特性分成几组。
非蛋白质氨基酸:除了22种蛋白质氨基酸外,许多非蛋白质氨基酸是已知的。它们要么不存在于蛋白质中(如肉碱、γ-氨基丁酸、左旋甲状腺素),要么不是由标准细胞机制(如羟脯氨酸和硒蛋氨酸)直接分离产生的。蛋白质中的非蛋白质氨基酸是通过翻译后修饰形成的,翻译后修饰是蛋白质合成过程中翻译后的修饰。这些修饰通常对蛋白质的功能或调节至关重要。例如,谷氨酸的羧基化可以更好地结合钙离子,胶原中含有羟脯氨酸,由脯氨酸的羟基化产生。另一个例子是通过赖氨酸残基的修饰在翻译起始因子 EIF5A 中形成腐胺赖氨酸。这种修饰也可以决定蛋白质的定位,例如,长疏水基团的加入可以使蛋白质结合到磷脂膜上。细胞中,酶是较被普遍了解和研究较多的蛋白质,它的特点是催化细胞中的各类化学反应。216394-06-8
氨基酸的作用:a-酮酸可再合成新的氨基酸,或转变为糖或脂肪。31127-54-5
蛋白质的特性:胞质蛋白:对于胞质蛋白来说,选择较佳的表达系统取决于蛋白质的大小和分子内二硫键的数目。对于分子质量为10?50 kD a 并含有极少二硫键的蛋白质而言,大肠杆菌是实现蛋白质可溶性表达的很好选择。对于更大或具有许多二硫键的蛋白质来说,如果需要可溶性表达,那么通常应优先选择杆状病毒或酵母表达系统。对于10kDa以下,有极少甚至没有二硫键的蛋白质,已通过融合可溶性标签,在大肠杆菌中实现了成功表达。或者,也可以将这些小蛋白质在毕赤酵母中进行分泌表达。31127-54-5