数学教学教具基本参数
  • 产地
  • 深圳
  • 品牌
  • 星河
  • 型号
  • XH
  • 是否定制
数学教学教具企业商机

平行四边形定理

平行四边形性质定理:

1.平行四边形的对角相等

2.平行四边形的对边相等

3.平行四边形的对角线互相平分

推论:夹在两条平行线间的平行线段相等

平行四边形判定定理:

1.两组对角分别相等的四边形是平行四边形

2.两组对边分别相等的四边形是平行四边形

3.对角线互相平分的四边形是平行四边形

4.一组对边平行相等的四边形是平行四边形

矩形定理

矩形性质定理1:矩形的四个角都是直角

矩形性质定理2:矩形的对角线相等

矩形判定定理1:有三个角是直角的四边形是矩形

矩形判定定理2:对角线相等的平行四边形是矩形

分类问题教学演示磁性教具。磁性教具数学教学教具报价

磁性教具数学教学教具报价,数学教学教具

7. 拓扑学a:点集拓扑学,b:代数拓扑学,c:同伦论,d:低维拓扑学,e:同调论,f:维数论,g:格上拓扑学,h:纤维丛论,i:几何拓扑学,j:奇点理论,k:微分拓扑学,l:拓扑学其他学科。8. 数学分析a:微分学,b:积分学,c:级数论,d:数学分析其他学科。9. 非标准分析10. 函数论a:实变函数论,b:单复变函数论,c:多复变函数论,d:函数逼近论,e:调和分析,f:复流形,g:特殊函数论,h:函数论其他学科。11. 常微分方程a:定性理论,b:稳定性理论。c:解析理论,d:常微分方程其他学科。12. 偏微分方程a:椭圆型偏微分方程,b:双曲型偏微分方程,c:抛物型偏微分方程,d:非线性偏微分方程,e:偏微分方程其他学科。13. 动力系统a:微分动力系统,b:拓扑动力系统,c:复动力系统,d:动力系统其他学科。果洛数学教学教具配置方案磁性圆柱圆锥体框架表面积模型。

磁性教具数学教学教具报价,数学教学教具

三角函数定理

任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

圆的定理

定理:过不共线的三个点,可以作且只可以作一个圆

定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧

推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧

推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧

推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧

定理:

1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等

2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线

3.圆的切线垂直经过切点的半径

4.三角形的三个内角平分线交于一点,这点是三角形的内心

5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

6.圆的外切四边形的两组对边的和相等

7.如果四边形两组对边的和相等,那么它必有内切圆

8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成**简分数。

15、要学会把小数化成分数和把分数化成小数的化法。

16、比较大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的比较大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中比较大的一个,叫做比较大公约数。)

17、互质数:公因数只有1的两个数,叫做互质数。

18、**小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中**小的一个叫做这几个数的**小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用**小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用比较大公因数) 中小学生几何体数学教具。

磁性教具数学教学教具报价,数学教学教具

全等三角形判定


定理:全等三角形的对应边、对应角相等

边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等

角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等

推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

边边边定理(SSS):有三边对应相等的两个三角形全等

斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

角的平分线



定理1:在角的平分线上的点到这个角的两边的距离相等

定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的**


哪里有中小学数学教学仪器卖?磁性教具数学教学教具报价

数学教具有小学数学教学中的应用。磁性教具数学教学教具报价

菱形定理

菱形性质定理1:菱形的四条边都相等

菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角

菱形面积=对角线乘积的一半,即S=(a×b)÷2

菱形判定定理1:四边都相等的四边形是菱形

菱形判定定理2:对角线互相垂直的平行四边形是菱形

正方形定理

正方形性质定理1:正方形的四个角都是直角,四条边都相等

正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

中心对称定理

定理1:关于中心对称的两个图形是全等的

定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

磁性教具数学教学教具报价

深圳市星河教学用品有限公司拥有教学教具,学具,教学模型,教学仪器,教学器材,演示设备,航模器材,资源教室,专业历史教室,专业地理教室,体育器材,美术画材,音乐乐器,科技探究设备,书法用品,陶艺设备,心理设备,特教教具,劳技工具,少年宫器材等多项业务,主营业务涵盖教学教具,教学器材,教学仪器,教学用品。公司目前拥有专业的技术员工,为员工提供广阔的发展平台与成长空间,为客户提供高质的产品服务,深受员工与客户好评。诚实、守信是对企业的经营要求,也是我们做人的基本准则。公司致力于打造***的教学教具,教学器材,教学仪器,教学用品。公司力求给客户提供全数良好服务,我们相信诚实正直、开拓进取地为公司发展做正确的事情,将为公司和个人带来共同的利益和进步。经过几年的发展,已成为教学教具,教学器材,教学仪器,教学用品行业出名企业。

与数学教学教具相关的文章
广东数学教学教具价格
广东数学教学教具价格

实物教具:几何模型:几何模型是用来展示几何图形的教具,如立体模型、平面模型等。它们可以帮助学生更好地理解几何概念和性质。计算器:计算器是用来进行数学计算的工具。它们可以帮助学生进行复杂的计算,提高计算效率。尺子和量角器:尺子和量角器是用来测量长度和角度的工具。它们可以帮助学生进行准确的测量和绘图。数...

与数学教学教具相关的新闻
  • 图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4、...
  • 数学作为一门基础学科,对于培养学生的逻辑思维能力、分析问题的能力以及解决实际问题的能力起着重要的作用。而数学教学教具作为数学教学的辅助工具,能够帮助学生更好地理解和掌握数学知识,提高数学学习的效果。数学教学教具的重要性:数学教学教具可以通过形象生动的展示方式,激发学生的学习兴趣。相比于枯燥的纸上计算...
  • 儋州九年制数学教学教具 2024-12-13 04:01:04
    基础数学知识在经济中的应用是源于市场经济的发展,随着我国市场经济的不断发展,用数学知识来定量分析经济领域中的种种问题,已成为经济学理论中一个重要的组成部分。根据分析人士的计算,从1969年到1998年近30年间,就有19位诺贝尔经济学奖的获得者是以数学作为研究的主要的方法,而这些人占了诺贝尔经济学奖...
  • 海口数学教学教具多少钱 2024-12-12 17:01:12
    计量单位长度、面积和体积以及其同类量之间的进率质量单位和他们之间的进率1吨=1000千克一千克=1000克时间单位进率、人民币进率1小时=60分钟1分钟=60秒1块=10角比与比例正比例、反比例、化简比、求比值、比与分数、除法联系、比、比例、可以用比例解应用题图形与空间图形、空间、周长、面积、侧面积...
与数学教学教具相关的问题
与深圳市星河教学用品有限公司相关的扩展资料【更多】
深圳市星河教学用品有限公司于2016年04月21日成立。法定代表人罗清,公司经营范围包括:一般经营项目是:教学仪器设备、服装、教具、玩具、模型、教育软件、实验室仪器及成套设备、功能教室设备、多媒体电教设备、录播系统设备、三维打印机、机器人、数控设备、电子产品及器材、办公设备、通用机械设备、计算机软硬件、移动设备软硬件、移动穿戴设备、电子设备、舞台音响灯光设备、制冷设备、监控设备、测量设备、厨房设备、饮水设备、安防设备、陶艺设备、通信产品、机床、化工仪器、文化用品、体育器材、音乐乐器、美术用品、工艺品(象牙及其制品除外)、实验室家具、办公家具及桌椅、学生床、课桌椅销售;室内外装饰工程;计算机系统集成、计算机周边设备及配件、办公设备及周边产品销售;货物及技术进出口;国内外贸易等。
信息来源于互联网 本站不为信息真实性负责