多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

比较两表格中的相关参数可以看出,基于分子光学标记的成像技术已经在生物活检和基因表达规律方面展示了较大的优势。例如,正电子发射断层成像(PET)可实现对分子代谢的成像,空间分辨率∶1-2mm,时间分辨率;分钟量级。与PET比较,光学成像的应用场合更广(可测量更多的参数,请参见表1-1),且具有更高的时间分辨率(秒级),空间分辨率可达到微米。因此,二者相比,虽然光学成像在测量深度方面不及PET,但在测量参数种类与时空分辨率方面有一定优势。对于小动物(如小白鼠)研究来说,光学成像技术可以实现小动物整体成像和在体基因表达成像。例如,初步研究表明,荧光介导层析成像可达到近10cm的测量深度;基于多光子激发的显微成像技术可望实现小鼠体内基因表达的实时在体成像。中国市场多光子显微镜进出口贸易趋势。布鲁克多光子显微镜成像区域

布鲁克多光子显微镜成像区域,多光子显微镜

2020年,JianglaiWu等人提出提高2PM横向扫描速率的装置,称为FACED(free-spaceangular-chirp-enhanceddelay)。圆柱透镜将激光束一维聚焦,会聚角为Δθ。光束进入到一对几乎平行的高反射镜中,其间距为S,偏角为α。经过反射镜多次反射后,激光脉冲被分成多个传播方向不同的子脉冲(N=Δθ/α),脉冲间以2S/c的时间延迟(c,光速)回射。FACED模块输出处的子脉冲序列可以看作从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成了一个空间上分离且时间延迟的焦点阵列。然后将该模块并入具有高速数据采集系统的标准双光子荧光显微镜中。光源是具有1MHz重复频率的920nm的激光器,通过FACED模块可产生80个脉冲焦点,其脉冲时间间隔为2ns。这些焦点是虚拟源的图像,虚拟源越远,物镜处的光束尺寸越大,焦点越小。光束沿y轴比x轴能更好地充满物镜,从而导致x轴的横向分辨率为0.82µm,y轴的横向分辨率为0.35µm。多光子显微镜数据分析多光子显微镜的大多数补偿器都采用棱镜。

布鲁克多光子显微镜成像区域,多光子显微镜

多光子显微镜对成像深度的改善利用红光或红外光激发,光散射小(小粒子的散射与波长的四次方的成反比)。不需要***,能更多收集来自成像截面的散射光子。***不能区分由离焦区域或焦点区发射出的散射光子,多光子在深层成像信噪比好。单光子激发所用的紫外或可见光在光束到达焦平面之前易被样品吸收而衰减,不易对深层激发。多光子荧光成像的特点。深度成像∶与共聚焦相比能更好地对厚散射物质成像。信噪比∶多光子吸收采用的波长是单光子吸收的2倍以上,所以显微试样中的瑞利散射更小,荧光测定的信噪比更高。观察活细胞∶离子测量(i.e.Ca2+),GFP,发育生物学等—减少了光毒性和光漂白,能对细胞长时间观察。

多光子激发的特点。激发波长∶两个或多个光子同时激发,激发波长是单光子激发波长的两倍或多倍(i.e.红光能激发UV探针)。多光子激发∶依赖于多个光子同时到达的时间。使用脉冲飞秒激光器(i.e.10-16 seconds),且能提供更高的峰值功率。荧光限制在焦点处,能满足多个光子同时达到产生多光子吸收。荧光强度正比于(激光强度)n。为什么使用飞秒激光器?多光子激发需要超快的激光器,皮秒脉冲不能实现三光子激发。深度成像需要更高、更窄脉冲输出功率。多光子激发光源处于近红外区,对细胞毒性和光漂白更小。多光子显微镜将生物打印结构准确定位和定向到特定的解剖部位,使其能够在小鼠组织内制造复杂结构。

布鲁克多光子显微镜成像区域,多光子显微镜

与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整大脑深处神经的了解与认识。2019年,JeromeLecoq等人从大脑深处的神经元成像、大量神经元成像、高速神经元成像这三个方面论述了相关的MPM技术。想要将神经元活动与复杂行为联系起来,通常需要对大脑皮质深层的神经元进行成像,这就要求MPM具有深层成像的能力。激发和发射光会被生物组织高度散射和吸收是限制MPM成像深度的主要因素,虽然可以通过增加激光强度来解决散射问题,但这会带来其他问题,例如烧坏样品、离焦和近表面荧光激发。增加MPM成像深度比较好的方法是用更长的波长作为激发光。多光子显微镜作为一种研究微观结构和功能的技术,在众多领域得到了普遍的应用。飞秒激光多光子显微镜数据处理

点扫描多光子显微镜可以深入样本并捕捉高质量的图像,但这个过程极其缓慢,因为图像是一次形成一个点。布鲁克多光子显微镜成像区域

通过添加FACED模块,可以将基于标准振镜的现有2PM轻松转换为千赫兹成像系统。FACED双光子荧光显微镜遵循光栅扫描,需要很少的计算处理,在稀疏或密集的标记样本中均可以使用,并且不受串扰的影响,而且对整个图像平面采样后可以进行运动校正。实验中没有观察到光损伤的迹象,此外,子脉冲延迟到达相同的样品位置,能为荧光团提供充足的时间使其从易于破坏的暗态返回到基态,可以明显减少光漂白。使用现有的传感器,FACED双光子荧光显微镜可以提供足够的速度和灵敏度来检测神经元过程中的钙瞬变和谷氨酸瞬变,以及来自细胞体的尖峰和亚阈值电压。该组使用基于FACED的2PM显微镜,在小鼠大脑中实现了千赫兹速率的神经活动成像。在物镜平均激光功率为10-85mW下,他们测量了清醒小鼠中V1神经元的自发性和感觉诱发性的超阈值和亚阈值电位活动。布鲁克多光子显微镜成像区域

与多光子显微镜相关的**
与多光子显微镜相关的扩展资料【更多】
多光子显微镜是一种用于生物学领域的分析仪器,于2009年04月01日启用。
信息来源于互联网 本站不为信息真实性负责