膜片钳技术原理:膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来(见右图),由于电极前列与细胞膜的高阻封接,在电极前列笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就单一离子通道电流膜片钳技术的建立,对生物学科学特别是神经科学是一资有重大意义的变革。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术。些技术的出现自然将细胞水平和分子水平的生理学研究联系在一起,同时又将神经科学的不同分野必然地融汇在一起,改变了既往各个分野互不联系、互不渗透,阻碍人们较全认识能力的弊端。这一技术的发现和基因克隆技术并架齐驱,给生命科学研究带来了巨大的前进动力。了解离子通道的功能以及结构的关系对于从分子水平深入探讨某些疾病措施等均具有十分重要的理论和实际意义。日本可升级膜片钳电压钳制
离子通道结构研究∶目前,绝大多数离子通道的一级结构得到了阐明但根本的还是要搞清楚各种离子通道的三维结构,在这方面,美国的二位科学家彼得·阿格雷和罗德里克'麦金农做出了一些开创性的工作,他们到用X光绕射方法得到了K离子通道的三维结构,二位因此获得2003年诺贝系化学奖。有关离子通道结构不是本 PPT的重点,可参考杨宝峰的<离子通道药理学>和Hill的<lonic Channels Of Excitable Membranes 》。对离子通道功能的研究,主要采用记录离子通道电流来间接反映离子通道功能,目前有如下两种技术:电压钳技术(Voltage Clamp),膜片钳(patch clamp)技术。德国单通道膜片钳实验操作膜片钳技术实现了小片膜的孤立和高阻封接的形成,增宽了记录频带范围,提高了分辨率。
神经毒理研究室是现代毒理学教育部重点实验室和江苏省应用毒理重点实验室的组成部分,在上世纪八九十年代就开始组建膜片钳实验室,属国内较早一批开展此工作的课题组,二十年来,在导师肖杭教授领导、全体研究生的共同努力下,现在这门技术已经成熟稳定,并得到国际国内同行的认可。1991Nobel基金会的颁奖评语∶膜片钳技术点燃了细胞和分子水平的生理学研究的**之火,为细胞生理学的研究带来了一场**性的变化,它和基因克隆技术并驾齐驱,给生命科学研究带来了巨大的前进动力。
内面向外膜片(inside-outpatch)高阻封接形成后,在将微管电极轻轻提起,使其与细胞分离,电极端形成密封小泡,在空气中短暂暴露几秒钟后,小泡破裂再回到溶液中就得到“内面向外”膜片。此时膜片两侧的膜电位由固定电位和电压脉冲控制。浴槽电位是地电位,膜电位等于玻管电位的负值。如放大器的电流监视器输出是非反向的,则输出将与膜电流(Im)的负值相等。外面向外膜片(out-sidepatch)高阻封接形成后,继续以负压抽吸,膜片破裂再将玻管慢慢地从细胞表面垂直地提起,断端游离部分自行融合成脂质双层,此时高阻封接仍然存在。而膜外侧面接触浴槽液。这种膜片形式应测膜片电阻,并消除漏电流和电容电流。整个过程要当心是否形成囊泡。如果浴槽保持地电位水平,膜电位即与玻管电位相等。如放大器是非反向的,放大器的输出将与Im值相等。膜片钳80%的工夫在于刺备细胞。
把膜电位钳位电压调到-80--100mV,再用钳位放大器的控制键把全细胞瞬态充电电流调定至零位(EPC-10的控制键称为C-slow和C-series;Axopatch200标为全细胞电容和系列电阻)。写下细胞的电容值Cc和未补整的系列电阻值Rs,用于消除全细胞瞬态电流,计算钳位的固定时间(即RsCc),然启根据欧姆定律从测定脉冲电流的振幅算出细胞的电阻RC。缓慢调节Rs旋钮注意测定脉冲反应的变化,逐渐增加补整的比例。如果RS补整非常接近振荡的阈值,RS或Cc的微细变化都会达到震荡的阈值,产生电压的振荡而使细胞受损。因此应当在RS补整水平写不稳定阈值之间留有10%-20%的余地为安全。准备资料收集和脉冲序列的测定。全自动膜片钳技术的出现标志着膜片钳技术已经发展到了一个崭新阶段。美国细胞膜片钳电生理技术
Eberwine等于1991年首先将膜片钳技术与RT-PCR技术结合起来运用。日本可升级膜片钳电压钳制
电压钳的缺点∶电压钳技术目前主要用于巨火细胞的全细胞电流研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥其它技术不能替代的作用。但也有其致命的弱点1、微电极需刺破细胞膜进入细胞,以致造成细胞浆流失,破坏了细胞生理功能的完整性;2、不能测定单一通道电流。因为电压钳制的膜面积很大,包含着大量随机开放和关闭着的通道,而且背景噪音大,往往掩盖了单一通道的电流。3、对体积小的细胞(如哺乳类***元,直径在10-30μm之间)进行电压钳实验,技术上有更大的困难。由于电极需插入细胞,不得不将微电极的前列做得很细,如此细的前列致使电极阻抗很大,常常是60~-8OMΩ或120~150MΩ(取决于不同的充灌液)。这样大的电极阻抗不利于作细胞内电流钳或电压钳记录时在短时间(0.1μs)内向细胞内注入电流,达到钳制膜电压或膜电流之目的。再者,在小细胞上插入的两根电极可产生电容而降低测量电压电极的反应能力。日本可升级膜片钳电压钳制
因斯蔻浦(上海)生物科技有限公司主要经营范围是仪器仪表,拥有一支专业技术团队和良好的市场口碑。公司业务涵盖nVista,nVoke,3D bioplotte,invivo等,价格合理,品质有保证。公司将不断增强企业重点竞争力,努力学习行业知识,遵守行业规范,植根于仪器仪表行业的发展。滔博生物秉承“客户为尊、服务为荣、创意为先、技术为实”的经营理念,全力打造公司的重点竞争力。