单光子显微技术是成熟的荧光显微技术,但由于其使用的激发光波长较短,成像深度有限;能量较大,会造成对荧光物质的漂白,光毒性严重。激光共焦扫描显微镜由于共焦显微镜的孔径很小,实现样本三维成像要逐点扫描,成像速度慢,对样本损害大,很难用于长时间活细胞成像。而宽场显微镜能够很好地实现实时动态成像,光漂白小,因而较早应用于活细胞内的实时检测,但宽场显微镜由于离焦信号的干扰,难以实现多维成像。双光子荧光显微镜(Two-PhotonLaser-ScanningMicroscopy)。双光子显微成像技术是近些年发展起来的结合了共聚焦激光扫描显微镜和双光子激发技术的一种新型非线性光学成像方法,采用长波激发,能对组织进行深层次成像。常用的比较好激发波长大多位于800-900nm,而水、血液和固有组织发色团对这个波段的光吸收率低,此外散射的激发光子不能激发样品,因此背景第,光损伤小,适用于在体检测。双光子荧光成像技术能准确定位细胞内置入的微电极位置,从而观察胞体、树突甚至单个树突棘的活性。研究者可完整的观察神经组织的分辨荧光图像,甚至可以分辨神经细胞单个树突棘中的钙分布。双光子显微镜可以进行厚的组织样品拍摄。美国2PPLUS双光子显微镜供应商
双光子显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双(多)光子成像优势在于,具有更深的组织穿透深度,利用红外光,能够在层面检测极限达1mm的组织区域;因信号背景比高,而具有更高的对比度;因激发体积小,具有定点激发的特性,具有更少的光毒性;激发波长由紫外、可见光调整为红外激发,能够更加安全。国外荧光双光子显微镜价位双光子显微镜只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被发动,所以双光子成像更清晰。
双光子吸收理论早在1931年就由诺奖得主提出,30年后因为有了激光才得到实验验证,但是到WinfriedDenk发明双光子显微镜又用了将近30年。要理解双光子的技术挑战和飞秒激光发挥的重要作用,首先要了解其中的非线性过程。双光子吸收相当于和频产生非线性过程,这要求极高的电场强度,而电场取决于聚焦光斑大小和激光脉宽。聚焦光斑越小,脉宽越窄,双光子吸收效率越高。对于衍射极限显微镜,聚焦在样品上的光斑大小只和物镜NA和激光波长有关,所以关键变量只剩下激光脉宽。基于以上分析,能够以高重频(100MHz)输出超短脉冲(100fs量级)的飞秒激光器成了双光子显微镜的标准激发光源。这也再次说明双光子显微镜的优势:只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被激发,所以双光子成像更清晰。WinfriedDenk初使用的光源是染料飞秒激光器(100fs脉宽、630nm可见光波长)。虽然染料激光器对于实验室演示尚可,但是使用很不方便所以远未实现商用。很快双光子显微镜的标配光源就变成了飞秒钛宝石激光器。除了固态光源优势,钛宝石激光器还具有较宽的近红外波长调谐范围,而近红外相比可见光穿透更深,对生物样品损伤更小。
2020年12月22日,临研所、病理科和科研处邀请北京大学王爱民副教授做了题目为“新一代微型双光子显微成像系统介绍及其在临床医疗诊断”的学术报告。学术报告由临研所医学实验研究平台潘琳老师主持。王爱民,北京大学信息科学技术学院副教授,毕业于北京大学物理系,获学士、硕士学位,后于英国巴斯大学物理系获博士学位。该研究组研发的微型双光子显微镜,第1次在国际上获得了小鼠大脑神经元和神经突触清晰稳定的动态信号,该成果获得了2017年度“中国光学进展”和“中国科学进展”,并被NatureMethods评为2018年度“年度方法--无限制行为动物成像”。目前,该研究组正在研究新一代双光子显微成像技术在临床诊断中的应用,为未来即时病理、离体组织检测、术中诊断等提供新的影像手段和分析方法。由于其非侵入性和高分辨率的特点,双光子显微镜成为了研究神经科学、ai症研究、免疫学等领域的重要工具。
和很多伟大的科学发明一样,双光子显微镜的出现也有一点偶然,但正是那瞬间的灵感为生物科学尤其是神经科学带来了一种**性的成像技术:双光子激发荧光显微镜。1990年初,当WinfriedDenk刚从康奈尔大学博士毕业准备前往瑞士读博后时,他看了一本关于激光扫描显微镜的书,从中了解到非线性光学效应——强光和物质的相互作用。当时,Denk有同事研究生物样品中的钙离子但苦于没有强大的紫外激光器和光学元件,于是他就想到如果使用双光子吸收就能够绕开紫外,换言之,与其通过一个紫外光子激发标记的钙离子,通过两个双倍波长的可见光光子也能激发相同的荧光。有了想法后马上实验。借了一套染料飞秒激光器,Denk联合他的导师WattWebb及其博士生JamesStrickler只用六个小时就完成了实验搭建,采集数据则用了两到三天,于是一篇里程碑式的文章就此诞生了。双光子显微镜在生物医学研究中有广泛的应用,可以观察细胞内的亚细胞结构、蛋白质分布、细胞活动等。进口布鲁克双光子显微镜厂家电话
双光子显微镜还可以对一些具有双光子特性的染料细胞进行特定实验;美国2PPLUS双光子显微镜供应商
与普通显微镜相比,电子显微镜可以在更小的尺度上观察事物,冷冻电子显微镜可以观察活性生物大分子。双光子显微镜有什么优势?它能做普通光学显微镜做不到的事情吗?原来双光子显微镜可以准确穿透厚标本进行定点和***观察!因为电磁波的波长越短,粒子越强,散射的影响越大。双光子显微镜将激发光源改为长波长激光,增加了激光的穿透力,同时降低了对细胞的毒性。此外,由于双光子激发效应只能发生在物镜的焦点处,因此扫描精度极高,还可以提高激发光效率,减少扫描点以外的荧光物质的消耗。美国2PPLUS双光子显微镜供应商