双光子显微镜基本参数
  • 品牌
  • bruker
  • 型号
  • 齐全
  • 可售卖地
  • 全国
  • 配送方式
  • 空运
双光子显微镜企业商机

双光子之源:飞秒激光:双光子吸收理论早在1931年就由诺奖得主MariaGoeppertMayer提出,30年后因为有了激光才得到实验验证,但是到WinfriedDenk发明双光子显微镜又用了将近30年。要理解双光子的技术挑战和飞秒激光发挥的重要作用,首先要了解其中的非线性过程。双光子吸收相当于和频产生非线性过程,这要求极高的电场强度,而电场取决于聚焦光斑大小和激光脉宽。聚焦光斑越小,脉宽越窄,双光子吸收效率越高。对于衍射极限显微镜,聚焦在样品上的光斑大小只和物镜NA和激光波长有关,所以关键变量只剩下激光脉宽。基于以上分析,能够以高重频(100MHz)输出超短脉冲(100fs量级)的飞秒激光器成了双光子显微镜的标准激发光源。这也再次说明双光子显微镜的优势:只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被激发,所以双光子成像更清晰。WinfriedDenk初使用的光源是染料飞秒激光器(100fs脉宽、630nm可见光波长)。虽然染料激光器对于实验室演示尚可,但是使用很不方便所以远未实现商用。很快双光子显微镜的标配光源就变成了飞秒钛宝石激光器。除了固态光源优势,钛宝石激光器还具有较宽的近红外波长调谐范围,而近红外相比可见光穿透更深,对生物样品损伤更小。双光子显微镜还可以对一些具有双光子特性的染料细胞进行特定实验;美国双光子显微镜授权公司

美国双光子显微镜授权公司,双光子显微镜

双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双(多)光子成像优势在于,具有更深的组织穿透深度,利用红外光,能够在层面检测极限达1mm的组织区域;因信号背景比高,而具有更高的对比度;因激发体积小,具有定点激发的特性,具有更少的光毒性;激发波长由紫外、可见光调整为红外激发,能够更加安全。美国荧光双光子显微镜应用是什么双光子显微镜角膜成像。

美国双光子显微镜授权公司,双光子显微镜

从双光子的原理和特点我们就可以明显的得出双光子的优点:☆光损伤小:由于双光子显微镜使用的是可见光或近红外光作为激发光源,这一波段的光对细胞和组织的光损伤小,适用于长时间的研究;☆穿透能力强:相对于紫外光,可见光和近红外光都具有更强的穿透能力,因而受生物组织散射的影响更小,解决对生物组织中深层物质的层析成像研究问题;☆高分辨率:由于双光子吸收截面很小,只有在焦平面很小的区域内可以激发出荧光,双光子吸收局限于焦点处的体积约为波长3次方的范围内;☆漂白区域小:由于激发只存在于交点处,所以焦点以外的区域都不会发生光漂白现象;☆荧光收集率高:与共聚焦成像相比,双光子成像不需要光学滤波器(共焦),这样就提高了对荧光的收集率,而收集率的提高直接导致图像对比度的提高;☆图像对比度高:由于荧光波长小于入射波长,因而瑞利散射产生的背景噪声只有单光子激发时的1/16,降低了散射的干扰;☆光子跃迁具有很强的选择激发性,所以可以对生物组织中一些特殊物质进行成像的研究;

TOPTICAFemtoFiberultra920超快光纤激光器是一种易于操作且无需维护的激光系统。其输出波长为920nm,非常适合常规荧光基团(如GFP,eGFP,Eosin,GCaMP,CFP,Calcein或者Venus)的双光子激发。能给荧光基团提供比较高的峰值功率,常用于神经科学和其他与激光有关的生物光子学学科。而且其独特设计(制造简单且经济高效的光源)对双光子荧光显微镜发展的革新具有潜在的可能。在双光子显微镜中,峰值功率就是亮度!如果您希望获得比较好的图像亮度,那么你就需要短脉冲,高功率,较重要的是需要干净的时间脉冲形状。FemtoFiberultra920具有足够高的输出功率,较短的脉冲和独特的Clean-Pulse技术,以及具有相对比较高的峰值功率,使得其在双光子显微镜中可以实现****的亮度,而不会对样品造成不必要的加热。FemtoFiberultra920交钥匙,完全集成的色散补偿(可确保样品处的脉冲较短),内置的功率控制,操作直观以及其坚固而紧凑的设计,使该系统具有极为友好的用户体验,是非线性显微镜应用的较好解决方案。例如荧光蛋白的双光子激发和基于SHG的对比机制。双光子显微镜为什么穿透能力强?

美国双光子显微镜授权公司,双光子显微镜

双光子显微成像的在生物医学研究和医疗领域应用有较大的应用前景,首先双光子显微镜能够进行细胞和组织结构成像,在亚微米级成像,此功能与目前市场上的共聚焦类显微镜性能类似;双光子显微成像能够实时、在体、原位、无创地,根据不同物质组份的光谱特性,区分成像;双光子显微镜能够进行生化指标成像,在无造影剂的前提下,利用自发荧光、二次谐波、荧光获得活细胞生化信息。双光子显微镜技术在医疗诊断应用中具有巨大的潜力,该领域还未形成标准和体系,需要系统的医学研究与庞大的医疗数据加以支撑,通过研究人体基于多光子成像技术,进行细胞结构、生化成分、微环境、组织形态、代谢功能的影响信息,找到与疾病的细胞学、分子生物学、组织病理学、诊断和***特征的关联关系,共同探究生理病理基础和分子细胞生物学机制,筛选鉴定**、皮肤病、自身免疫病及其他疑难疾病的诊断及鉴别诊断依据,建立全新的多光子细胞诊断的完整数据库,定义出针对不同疾病的多光子临床检测设备的产品标准。双光子显微镜不需要共聚焦细孔,提高了荧光检测效率。国外investigator双光子显微镜荧光探测

双光子显微镜使用长波长脉冲光,是通过物镜汇聚的。美国双光子显微镜授权公司

双光子吸收理论早在1931年就由诺奖得主提出,30年后因为有了激光才得到实验验证,但是到WinfriedDenk发明双光子显微镜又用了将近30年。要理解双光子的技术挑战和飞秒激光发挥的重要作用,首先要了解其中的非线性过程。双光子吸收相当于和频产生非线性过程,这要求极高的电场强度,而电场取决于聚焦光斑大小和激光脉宽。聚焦光斑越小,脉宽越窄,双光子吸收效率越高。对于衍射极限显微镜,聚焦在样品上的光斑大小只和物镜NA和激光波长有关,所以关键变量只剩下激光脉宽。基于以上分析,能够以高重频(100MHz)输出超短脉冲(100fs量级)的飞秒激光器成了双光子显微镜的标准激发光源。这也再次说明双光子显微镜的优势:只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被激发,所以双光子成像更清晰。WinfriedDenk初使用的光源是染料飞秒激光器(100fs脉宽、630nm可见光波长)。虽然染料激光器对于实验室演示尚可,但是使用很不方便所以远未实现商用。很快双光子显微镜的标配光源就变成了飞秒钛宝石激光器。除了固态光源优势,钛宝石激光器还具有较宽的近红外波长调谐范围,而近红外相比可见光穿透更深,对生物样品损伤更小。美国双光子显微镜授权公司

与双光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责