往复压缩机作为工业生产中的重要组成设备,保证其正常运行具有极其重要的实际意义。根据相关研究统计,气阀故障大约占到了往复压缩机故障总数的60%[1]。因此,有必要对往复压缩机气阀故障进行深入的分析和研究。往复压缩机气阀在工作中会受到摩擦,冲击等多种因素的干扰,导致其振动信号具有强烈的非线性,非平稳性特...
在机械设备运行过程中,零部件的运动产生振动和冲击,包含着丰富的设备健康运行状态信息[1-2]。振动冲击往往是由零部件之间的碰撞敲击产生,其幅值大小、出现位置表现着设备的健康状态。在航空、船舶、石油化工等领域的机械设备中,包括航空发动机、内燃机、齿轮箱、往复压缩机、泵等,冲击振动是常见的故障模式[3-5]。因此,监测机械振动信号中的冲击成分可有效反映机械部件运行的健康状态,对设备进行故障诊断具有重要的意义。振动信号冲击成分呈现多频段分布,并伴随着噪声干扰,不同频率成分的冲击在时域混叠等问题[8-9]。以上情况,导致了复杂机械设备的实际振动监测信号的分析难度,造成了早期故障冲击特征难以捕捉等问题。更进一步地,其中一些往复机械(柴油机、往复压缩机、往复泵等)的振动信号的冲击成分在时域分布上呈现周期性间隔特点,与曲轴特定转角对应[10-12],单从回转设备的频域分析方法在此并不适应。由于实际振动信号的频域复杂性和时域多冲击分布特点,因此需要对采集的振动冲击信号进行频域分解和时域冲击的提取,为后续特征提取和故障诊断奠定基础。故障机理研究模拟实验台是深入分析故障原因的基础。行星齿轮箱故障机理研究模拟实验台公司
针对滚动轴承故障类型和损伤程度难以识别的问题,提出一种基于变分模态分解(VariationalModeDecomposition,VMD)和Gath-Geva(GG)模糊聚类相结合的滚动轴承故障分类方法。该方法通过对已知滚动轴承故障信号进行VMD分解,利用分量频率中心的大小确定分解模态的数量,将所得本征模态分量组成初始特征矩阵进行奇异值分解;选取3个比较大奇异值作为GG聚类算法的输入,得到已知故障信号的隶属度矩阵和聚类中心;通过待测信号初始隶属度矩阵与已知故障信号聚类中心之间的海明贴近度识别滚动轴承的故障类型和损伤程度。通过滚动轴承振动数据对所述方法的有效性进行验证,瓦伦尼安教学设备桌面式齿轮故障教学平台便携式转子轴承教学实验台桌面式转子轴承故障教学平台转子动力学研究实验台故障机理研究教学平台转子轴承综合故障模拟实验台诊断台转子轴承教学平台电机故障机理研究模拟实验台使用方法故障机理研究模拟实验台的技术含量高。
航空发动机双转子系统叶片-机匣碰摩故障模拟,Faultsimulationofblade-casingrubbingfordual-rotorsystemofaero-engines叶片-机匣碰摩严重影响航空发动机的性能、可靠性及安全性。考虑叶片-机匣碰摩、轴承非线性、联轴器不对中及高低压转子不平衡,利用有限元法建立双转子系统的非线性动力学模型;然后利用模态综合法缩减系统自由度,数值求解降阶模型的非线性振动响应,分析叶片-机匣碰摩故障响应特征。数值与实验结果表明:航空发动机双转子系统为多激励非线性系统,系统振动响应频率成分复杂,包括高低压转轴频率、多倍频、组合频率及其他复杂频率;当叶尖间隙较大时,叶片-机匣碰摩可能为局部碰摩,故障特征频率为叶片通过频率及其倍频,并在叶片通过频率两侧存在高低压转轴频率的调制边频带;当叶尖间隙较小时,叶片-机匣碰摩可能发生全周碰摩,呈现出由干摩擦引起的强烈自激振动。研究结果可为航空发动机双转子系统的叶片-机匣碰摩故障诊断及叶尖间隙设计提供一定参考。
MachineryFaultSimulator(机械故障模拟器)DrivetrainDiagnosticsSimulator(动力传动系统诊断模拟器)MachineryFault&RotorDynamicsSimulator(机械故障与转子动力学模拟器)Motorfaultdiagnosissimulator(电机故障诊断模拟器)BearingPrognosticsSimulator(轴承预测性模拟器)GearboxPrognosticsSimulator(齿轮箱预测模拟器)Portablevibrationsimulator(便携式振动模拟器)MachineVibrationSimulator(机械振动模拟器)Machinevibration–ShaftAlignmentSimulator(机械振动-轴对中模拟器)MachineryFaultSimulator–Lite(机械故障模拟器-简装版)MachineryFaultSimulator–Magnum(机械故障模拟器-完整版)Balancing–AlignmentTrainer(动平衡-对中训练台)MachineVibration&GearboxSimulator(机械振动-齿轮箱模拟器)故障机理研究模拟实验台为故障分析提供了依据。
离心风机故障植入试验平台机械故障仿真测试台架风力发电故障植入试验平台直升机尾翼传动振动及扭转特性..直升机齿轮传动振动试验平台旋转机械故障植入综合试验平台旋转机械故障植入轻型综合试验台行星齿轮箱故障植入试验平台高速柔性转子振动试验平台行星及平行齿轮箱故障植入试验台刚性转子振动试验平台轴系试验平台电机可靠性研究对拖试验平台往复压缩机轴瓦传统故障诊断方法需要人工提取特征,费时耗力且敏感特征设计困难,基于卷积神经网络的故障诊断方法虽然不需要人工进行特征提取,但模型存在梯度或消失问题。神经网络在图像识别领域有明显优势,常用的振动信号时频图像处理方法如小波变换、短时傅里叶变换等在将一维信号转为二维图像时可能会丢失信号的时间依赖性,故障机理研究模拟实验台的研发需要团队协作。电机故障机理研究模拟实验台使用方法
故障机理研究模拟实验台的技术不断更新。行星齿轮箱故障机理研究模拟实验台公司
现有方法对强噪声背景下的弱信号的分析不是很理想,提出一种循环相位网络来分析高斯白噪声下的微弱周期信号,循环相位网络在一定信噪比范围内相比于其他微弱信号检测法能更好的提取微弱信号相关信息,且计算量小,相关理论简单,适应于对微弱信号的快速检测。为了进一步减少计算量,引入了微弱信号存在性检测法滤除纯高斯噪声信号,经实验验证微弱信号存在性检测法与循环相位网络相结合,对强噪声背景下的微弱周期信号分析具有良好的效果行星齿轮箱故障机理研究模拟实验台公司
往复压缩机作为工业生产中的重要组成设备,保证其正常运行具有极其重要的实际意义。根据相关研究统计,气阀故障大约占到了往复压缩机故障总数的60%[1]。因此,有必要对往复压缩机气阀故障进行深入的分析和研究。往复压缩机气阀在工作中会受到摩擦,冲击等多种因素的干扰,导致其振动信号具有强烈的非线性,非平稳性特...
西藏VALENIAN教学实验台
2024-12-24北京销售疏水阀检测仪
2024-12-24江西故障机理研究模拟实验台哪里买
2024-12-24湖北新一代故障机理研究模拟实验台
2024-12-24新疆机械故障故障机理研究模拟实验台
2024-12-24设备动力传动故障模拟实验台怎么做
2024-12-24山西液压机械故障综合模拟实验台
2024-12-24国产故障机理研究模拟实验台怎么样
2024-12-24福建疏水阀检测仪特点
2024-12-24