多光子成像系统提供的优势包括了真正的三维成像、对活组织内部深处进行成像的能力以及消除平面外荧光的能力。使用这种方法进行成像,可以对斯托克斯位移非常短和/或效率非常低的荧光染料进行成像,甚至可以对样品或组织中固有的荧光分子进行成像。多光子成像的缺点包括需要高峰值功率脉冲激光器,例如锁模钛:蓝宝石激光器,并且直到现在,缺乏在整个发射范围内提供足够吞吐量的高性能滤光片。整个激光调谐范围内的兴趣和足够的阻挡。多光子显微镜,突破光学成像技术极限,开启生命科学新纪元。美国啮齿类多光子显微镜Ultima Investigator
单光子激发荧光和双光子激发荧光,是从荧光产生的机理上来区分的。而共焦则是荧光显微镜的一种结构,其目的是为了,通过共焦结构,提高整个荧光显微镜的空间分辨率。所以共焦荧光显微镜可以根据激发光源的不同,实现单光子共焦荧光成像或者双光子共焦荧光成像。往往一个普通的双光子荧光显微镜(没有共焦结构)其空间分辨率也可以达到单光子共焦荧光显微镜的水平。这样就可以简化整个系统,相对来说,就提高了激发光源的利用率,以及荧光的探测效率,这个也是我们提倡双光子荧光成像的原因之一。双光子荧光共焦显微镜由于双光子效应和共焦结构,分辨率则会更高,而我们通常说的共焦显微镜都是指单光子激发荧光的。荧光多光子显微镜数据采集突破传统光学成像极限,多光子显微镜适应各种复杂环境。
与传统的单光子宽视野荧光显微镜相比,多光子显微镜具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整大脑深处神经的了解与认识。2019年,JeromeLecoq等人从大脑深处的神经元成像、大量神经元成像、高速神经元成像这三个方面论述了相关的MPM技术。想要将神经元活动与复杂行为联系起来,通常需要对大脑皮质深层的神经元进行成像,这就要求MPM具有深层成像的能力。激发和发射光会被生物组织高度散射和吸收是限制MPM成像深度的主要因素,虽然可以通过增加激光强度来解决散射问题,但这会带来其他问题,例如烧坏样品、离焦和近表面荧光激发。增加MPM成像深度比较好的方法是用更长的波长作为激发光。
多光子显微优点:☆光损伤小:由于双光子显微镜使用的是可见光或近红外光作为激发光源,这一波段的光对细胞和组织的光损伤小,适用于长时间的研究;☆穿透能力强:相对于紫外光,可见光和近红外光都具有更强的穿透能力,因而受生物组织散射的影响更小,解决对生物组织中深层物质的层析成像研究问题;☆高分辨率:由于双光子吸收截面很小,只有在焦平面很小的区域内可以激发出荧光,双光子吸收*局限于焦点处的体积约为波长3次方的范围内;☆漂白区域小:由于激发只存在于交点处,所以焦点以外的区域都不会发生光漂白现象;☆荧光收集率高:与共聚焦成像相比,双光子成像不需要光学滤波器,这样就提高了对荧光的收集率,而收集率的提高直接导致图像对比度的提高;☆图像对比度高:由于荧光波长小于入射波长,因而瑞利散射产生的背景噪声只有单光子激发时的1/16,降低了散射的干扰;☆光子跃迁具有很强的选择激发性,所以可以对生物组织中一些特殊物质进行成像研究;☆避免组织自发荧光的干扰,获得较强的样品荧光:生物组织中的自发荧光物质的激发波长一般在350~560nm范围内,采用近红外或红外波段的激光作为光源,能**降低生物组织对激发光吸收。多光子显微镜,助力科研人员深入探索生命科学的奥秘。
光学成像技术与分子生物学技术的结合为研究上述科学问题提供了条件与可能。因此,在现代分子生物学技术基础上,急需发展新的成像技术。在动物体内,如何实现基因表达及蛋白质之间相五作用的实时在体成像监测是当前迫切需要解决的重大科学技术问题。这是也生物学、信息科学(光学)和基础临床医学等学科共同感兴趣的重大问题。对这-一一科学问题的研究不仅有助于阐明生命活动的基本规律、认识疾病的发展规律,而且对创新药物研究、药物疗效评价以及发展疾病早期诊断技术等产生重大影响。由于其非侵入性和高分辨率的特点,多光子显微镜在神经科学、ai症研究、免疫学等领域发挥了重要作用。啮齿类多光子显微镜实验操作
高速扫描,高分辨率,多光子显微镜助力科研进步。美国啮齿类多光子显微镜Ultima Investigator
当激光光束焦点的位置在镜面上,此时被反射的激光在无限空间中成为准直光束,并在OBJ2的焦平面上形成了一个激光光斑。同理,如果横向扫描光束,则会形成远离倾斜镜镜面的焦点,这又导致返回的光束会聚或发散,进而OBJ2能在轴向不同位置形成焦点,通过这种方式即能实现连续的轴向扫描。对于较小的倾斜角,聚焦没有球差。该组在实验中表征了这种将横向扫描转换为轴向扫描技术的光学性能,并使用它将光片显微镜的成像速度提升了一个数量级,从而可以在三个维度上量化快速的囊泡动力学。该组还演示了使用双光子光栅扫描显微镜以12kHz进行共振远程聚焦,该技术可对大脑组织和斑马鱼心脏动力学进行快速成像,并具有衍射极限的分辨率。美国啮齿类多光子显微镜Ultima Investigator