企业商机
数字信号测试基本参数
  • 品牌
  • 克劳德
  • 型号
  • 数字信号测试
数字信号测试企业商机

要把并行的信号通过串行总线传输,一般需要对数据进行并/串转换。为了进一步减少传输线的数量和提高传输距离,很多高速数据总线采用嵌入式时钟和8b/10b的数据编码方式。8b/10b编码由于直流平衡、支持AC耦合、可嵌入时钟信息、抗共模干扰能力强、编解码结构相对简单等优点,在很多高速的数字总线如FiberChannel、PCIe、SATA、USB3.0、DisplayPort、XAUI、RapidIO等接口上得到广泛应用。图1.20是一路串行的2.5Gbps的8b/10b编码后的数据流以及相应的解码结果,从中可以明显看到解出的K28.5等控制码以及相应的数据信息。数字信号的抖动(Jitter);信号完整性测试数字信号测试执行标准

信号完整性测试数字信号测试执行标准,数字信号测试

很多经典的处理器采用了并行的总线架构。比如大家熟知的51单片机就采用了8根并行数据线和16根地址线;CPU的鼻祖——Intel公司的8086微处理器——**初推出时具有16根并行数据线和16根地址线;

现在很多嵌入式系统中多使用的ARM处理器则大部分使用32根数据线以及若干根地址线。并行总线的比较大好处是总线的逻辑时序比较简单,电路实现起来比较容易;但是缺点也是非常明显的,比如并行总线的信号线数量非常多,会占用大量的引脚和布线空间,因此芯片和PCB的尺寸很难实现小型化,特别是如果要用电缆进行远距离传输时,由于信号线的数量非常多,使得电缆变得非常昂贵和笨重。 信号完整性测试数字信号测试执行标准对于一个数字信号,要进行可靠的0、1信号传输,就必须满足一定的电平、幅度、时序等标准的要求。

信号完整性测试数字信号测试执行标准,数字信号测试

采用前向时钟的总线因为有专门的时钟通路,不需要再对数据进行编解码,所以总线效率一般都比较高。还有一个优点是线路噪声和抖动对于时钟和数据线的影响基本是一样的(因为走线通常都在一起),所以对系统的影响可以消除到小。

嵌入式时钟的电路对于线路上的高频抖动非常敏感,而采用前向时钟的电路对高频抖动的敏感度就相对小得多。前向时钟总线典型的数据速率在500Mbps~12Gbps.

在前向时钟的拓扑总线中,时钟速率通常是数据速率的一半(也有采用1/4速率、1/10或其他速率的),数据在上下边沿都采样,也就是通常所说的DDR方式。使用DDR采样的好处是时钟线和数据线在设计上需要的带宽是一样的,任何设计上的局限性(比如传输线的衰减特性)对于时钟和数据线的影响是一样的。

前向时钟在一些关注效率、实时性,同时需要高吞吐量的总线上应用比较,比如DDR总线、GDDR总线、HDMI总线、Intel公司CPU互连的QPI/UPI总线等。

数据经过8b/10b编码后有以下优点:

(1)有足够多的跳变沿,可以从数据中进行时钟恢复。正常传输的数据中可能会有比较长的连续的0或者连续的1,而进行完8b/10b编码后,其编码规则保证了编码后的数据流中不会出现超过5个连续的0或1,信号中会出现足够多的跳变沿,因此可以采用嵌入式的时钟方式,即接收端可以从数据流中通过PLL电路直接恢复时钟,不需要专门的时钟传输通道。

(2)直流平衡,可以采用AC耦合方式。经过编码后数据中不会出现连续的0或者1, 但还是有可能在某个时间段内0或者1的数量偏多一些。从上面的编码表中我们可以看 到,同一个Byte对应有正、负两组10bit的编码, 一个编码中1的数量多一些,另一个编码中 0 的数量多一些。数据在对当前的Byte进行8b/10b编码传输时,会根据前面历史传输的 数据中正负bit的数量来选择使用哪一组编码,从而可以保证总线上正负bit的数量在任何 时刻基本都是平衡的,也就是直流点不会发生大的变化。直流点平衡以后,在信号传输的路 径上我们就可以采用AC耦合方式(常用的方法是在发送端或接收端串接隔直电容),这  样信号对于收发端的地电平变化和共模噪声的抵抗能力进一步增强,可以传输更远的距离。 真实的数字信号频谱;

信号完整性测试数字信号测试执行标准,数字信号测试

对于并行总线来说,更致命的是这种总线上通常挂有多个设备,且读写共用,各种信号分叉造成的反射问题使得信号质量进一步恶化。

为了解决并行总线占用尺寸过大且对布线等长要求过于苛刻的问题,随着芯片技术的发展和速度的提升,越来越多的数字接口开始采用串行总线。所谓串行总线,就是并行的数据在总线上不再是并行地传输,而是时分复用在一根或几根线上传输。比如在并行总线上 传输1Byte的数据宽度需要8根线,而如果把这8根线上的信号时分复用在一根线上就可 以减少需要的走线数量,同时也不需要再考虑8根线之间的等长关系。 数字此案好的上升时间(Rising Time);信号完整性测试数字信号测试执行标准

幅度测量是数字信号常用的测量,也是很多其他参数侧鲁昂的基础。信号完整性测试数字信号测试执行标准

预加重是一种在发送端事先对发送信号的高频分量进行补偿的方法,这种方法的实现是通过增大信号跳变边沿后个比特(跳变比特)的幅度(预加重)来完成的。比如对于一个00111的比特序列来说,做完预加重后序列里个1的幅度会比第二个和第三个1的幅度大。由于跳变比特了信号里的高频分量,所以这种方法实际上提高了发送信号中高频信号的能量。在实际实现时,有时并不是增加跳变比特的幅度,而是相应减小非跳变比特的幅度,减小非跳变比特幅度的这种方法有时又叫去加重(De-emphasis)。图1.26反映的是预加重后信号波形的变化。

对于预加重技术来说,其对信号改善的效果取决于其预加重的幅度的大小,预加重的幅度是指经过预加重后跳变比特相对于非跳变比特幅度的变化。预加重幅度的计算公式如图1.27所示。数字总线中经常使用的预加重有3.5dB、6dB、9.5dB等。对于6dB的预加重来说,相当于从发送端看,跳变比特的电压幅度是非跳变比特电压幅度的2倍。 信号完整性测试数字信号测试执行标准

与数字信号测试相关的文章
山西自动化数字信号测试 2024-07-26

建立时间和保持时间加起来的时间称为建立/保持时间窗口,是接收端对于信号保持在 同一个逻辑状态的**小的时间要求。数字信号的比特宽度如果窄于这个时间窗口就肯定无 法同时满足建立时间和保持时间的要求,所以接收端对于建立/保持时间窗口大小的要求实 际上决定了这个电路能够工作的比较高的数据速率。通常工 作速率高一些的芯片,很短的建 立时间、保持时间就可以保证电路可靠工作,而工作速率低一 些的芯片则会要求比较长的建 立时间和保持时间。 另外要注意的是, 一个数字电路能够可靠工作的比较高数据速率不仅取决于接收端对于 建立/保持时间的要求,输出端的上升时间过缓、输出幅度偏小、信号和时钟中有抖动、信...

与数字信号测试相关的问题
信息来源于互联网 本站不为信息真实性负责