双光子显微镜基本参数
  • 品牌
  • bruker
  • 型号
  • 齐全
  • 可售卖地
  • 全国
  • 配送方式
  • 空运
双光子显微镜企业商机

配合双光子激发技术,激光共聚扫描显微镜则能更好得发挥功效。那么,什么是双光子激发技术呢?在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子使电子跃迁到较高能级,经过一个很短的时间后,电子再跃迁回低能级同时放出一个波长为长波长一半的光子(P=h/λ)。利用这个原理,便诞生了双光子激发技术。双光子显微镜使用长波长脉冲激光,通过物镜汇聚,由于双光子激发需要很高的光子密度,而物镜焦点处的光子密度是比较高的,所以只有在焦点处才能发生双光子激发,产生荧光,该点产生的荧光再次穿过物镜,被光探头接收,从而达到逐点扫描的效果。由于双光子显微镜使用的是可见光或近红外光作为激发光源,适用于长时间的研究。美国激光双光子显微镜荧光寿命计数

美国激光双光子显微镜荧光寿命计数,双光子显微镜

TOPTICAFemtoFiberultra920超快光纤激光器是一种易于操作和免维护的激光系统其输出波长为920nm,非常适合常规荧光基团(如GFP、eGFP、曙红、GCaMP、CFP、钙黄绿素或金星)的双光子激发。它可以为荧光基团提供相对较高的峰值功率,常用于神经科学和其他与激光相关的光子学。此外,其独特的设计(简单和经济的光源)具有创新双光子荧光显微镜发展的潜力。在双光子显微镜中,峰值功率就是亮度!如果你想获得更好的图像亮度,那么你需要短脉冲,高功率,更重要的是,干净的时间脉冲形状。FemtoFiberultra920具有足够高的输出功率、短脉冲、独特的Clean-Pulse技术和相对较高的峰值功率,这使得在双光子显微镜中实现****亮度而无需对样品进行不必要的加热成为可能。FemtoFiberultra920全包式、完全集成的色散补偿(可确保样品处的短脉冲)、内置电源控制、直观的操作及其坚固紧凑的设计使系统具有非常友好的用户体验,是非线性显微镜应用的良好解决方案。例如,荧光蛋白的双光子激发和基于SHG的对比机制美国荧光双光子显微镜授权公司双光子显微镜除了可以进行厚的组织样品拍摄以外呢,可以在小鼠的的任何部位进行成像。

美国激光双光子显微镜荧光寿命计数,双光子显微镜

在高光子密度的情况下,荧光分子可以同时吸收两个长波长的光子,然后发射出一个波长较短的光子,其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的(如下图)。如烟酰胺腺嘌呤二核苷酸(NADH),在单光子激发时,在波长为350nm光的激发下发出450nm荧光;而在双光子激发时,可采用750nm的激发光得到450nm荧光。由于双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。这种激光器发出的激光具有很高的峰值能量和很低的平均能量,从而可以减少光漂白和光毒性带来的不利影响。

随着技术的发展,双光子显微镜的性能得到不断地优化,结合它的特点,大致可以分成深和活两个方面的提升。要想让激发激光进入更深的层面,大致可从两个方面入手,装置优化与标本改造。关于装置优化,我们可以把激光束变得更细,使能量更加集中,就能让激光穿透更深。关于标本,其中影响光传播的主要是物质吸收和散射,解决这个问题,我们需要对样本进行透明化处理。一种方法是运用某种物质将标本浸泡,使其中的物质(主要是脂质)被破坏或溶解。另一种方法是运用电泳将脂质电解,让标本的“透明度”得到提高。于双光子激发需要两个光子同时到达,因此只有在焦点附近的样品区域才会激发,从而实现三维成像和高分辨率。

美国激光双光子显微镜荧光寿命计数,双光子显微镜

使用双光子显微镜可以以亚细胞分辨率对钙离子传感器和谷氨酸传感器成像,从而测量不透明大脑深处的活动;成像膜电压变化能直接反映神经元活动,但神经元活动的速度对于常规的2PM来说太快。目前电压成像主要通过宽场显微镜实现,但它的空间分辨率较差并且只是于浅层深度。因此要在不透明的大脑中以高空间分辨率对膜电压变化进行成像,需要较提高2PM的成像速率。FACED模块输出处的子脉冲序列可以看作从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成了一个空间上分离且时间延迟的焦点阵列。然后将该模块并入具有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是具有1MHz重复频率的920nm的激光器,通过FACED模块可产生80个脉冲焦点,其脉冲时间间隔为2ns。这些焦点是虚拟源的图像,虚拟源越远,物镜处的光束尺寸越大,焦点越小。光束沿y轴比x轴能更好地充满物镜,从而导致x轴的横向分辨率为0.82µm,y轴的横向分辨率为0.35µm。双光子显微镜工作原理是利用两个光子的能量相加达到荧光激发能量阈值,来激发样品中荧光分子发出荧光信号。美国激光双光子显微镜荧光寿命计数

双光子显微镜的应用中,该如何选择以及更好的使用PMT。美国激光双光子显微镜荧光寿命计数

在国家自然科学基金委国家重大科研仪器研制专项《超高时空分辨微型化双光子在体显微成像系统》的支持下,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民医学科学院组成跨学科团队,历经三年多的协同奋战,成功研制新一代高速分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。原始论文于5月29日在线发表于自然杂志子刊NatureMethods(IF25.3),并已申请多项。美国激光双光子显微镜荧光寿命计数

与双光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责