1976年德国马普生物物理化学研究所Neher和Sakmann在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh启动的单通道离子电流,从而产生了膜片钳技术。1980年Sigworth等在记录电极内施加5-50cmH2O的负压吸引,得到10-100GΩ的高阻封接(Giga-seal),明显降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。1983年10月,《Single-ChannelRecording》一书问世,奠定了膜片钳技术的里程碑。Sakmann和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*48小时随时人工在线咨询.滔博生物膜片钳研究系统-细胞放电,组织切片放电,动物放电!日本可升级膜片钳报价
膜片钳在通道研究中起着重要的作用。膜片钳技术可以直接观察和区分单个离子通道电流及其开闭时间,区分离子通道的离子选择性,同时发现新的离子通道和亚型,在记录单细胞电流和全细胞电流的基础上,进一步计算细胞膜上的通道数和开放概率。也可用于研究某些细胞内或细胞外物质对离子通道的开闭和通道电流的影响。同时用于研究细胞信号的跨膜转导和细胞分泌机制。结合分子克隆和定点突变技术,膜片钳技术可用于研究离子通道的分子结构与生物学功能的关系。膜片钳技术也可用于分析药物对其靶受体的作用位点。例如,神经元烟碱受体是配体门控离子通道,膜片钳全细胞记录技术可以通过记录烟碱诱发电流,直接反映神经元烟碱受体活动的全过程,包括受体与其激动剂和拮抗剂的亲和力、离子通道开闭的动态特征、受体的***等。用膜片钳全细胞记录技术观察拮抗剂对烟碱受体兴奋的量效曲线的影响,以确定其作用的动态特征。然后根据拮抗剂对受体***的影响分析,拮抗剂的作用是否是电压依赖性和使用依赖性的,我们可以从功能上区分拮抗剂对烟碱受体的不同作用位点,即判断拮抗剂是作用于受体的激动剂识别位点、离子通道还是其他变构位点。德国双分子层膜片钳参数脂质层电导很低,由于双分子层的结构特点,形成了细胞的膜电容,通道蛋白开闭状况主要决定了膜电导的数值。
膜片钳技术的创立取代了电压钳技术,是细胞电生理研究的一个飞跃,使得离子通道的研究,从宏观深入到微观,使昔日的“肉汤生理学(brothphysiology)”与“闪电生理学(lightningphysiology)”在分子水平上结合起来,使人们对膜通道的认识耳目一新。当前,生理学、生物物理学、生物化学、分子生物学和药理学等多种学科正在把膜片钳技术和膜通道蛋白重组技术、同位素示踪技术和光谱技术等非电生理技术结合起来,协同对离子通道进行较全的研究。不少实验室已经将基因工程与膜片钳技术结合起来,把通道蛋白有目的地重组于人工膜中进行研究。设想将合成的通道蛋白分子接种入机体以替换有缺陷和异常的通道的功能而达到的目的。
电压钳的缺点∶电压钳技术目前主要用于巨火细胞的全细胞电流研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥其它技术不能替代的作用。但也有其致命的弱点1、微电极需刺破细胞膜进入细胞,以致造成细胞浆流失,破坏了细胞生理功能的完整性;2、不能测定单一通道电流。因为电压钳制的膜面积很大,包含着大量随机开放和关闭着的通道,而且背景噪音大,往往掩盖了单一通道的电流。3、对体积小的细胞(如哺乳类***元,直径在10-30μm之间)进行电压钳实验,技术上有更大的困难。由于电极需插入细胞,不得不将微电极的前列做得很细,如此细的前列致使电极阻抗很大,常常是60~-8OMΩ或120~150MΩ(取决于不同的充灌液)。这样大的电极阻抗不利于作细胞内电流钳或电压钳记录时在短时间(0.1μs)内向细胞内注入电流,达到钳制膜电压或膜电流之目的。再者,在小细胞上插入的两根电极可产生电容而降低测量电压电极的反应能力。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*43小时随时人工在线咨询.国内外质优膜片钳机构,滔博生物,7*24小时随时人工在线咨询.
膜片钳技术是神经科学领域非常重要的一项技术,1976年由国马普生物物理研究所Neher和Sakmann发明,从而在活细胞上记录到单个离子通道的电流。近半个世纪来,膜片钳技术已经成为神经科学领域较常用也是较实用的技术之一,具有极大的精确性和灵活性,能够揭示离子通道,单细胞突触反应,及神经环路连接等多层次的电生理特性。做过膜片钳的人都知道,膜片钳的信号采集设备一般由前置放大器,放大器,模数/数模转换器等构成,神经元电信号先通过前置放大器(headstage)初步放大,后传输入放大器进一步放大,再传入模数转换器转化为数字信号,后被计算机采集。下图显示的是我们较常使用的AXON和HEKA膜片钳的一个信号传输路径。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*64小时随时人工在线咨询.通过研究离子通道的离子流, 从而了解离子运输、信号传递等信息。多通道膜片钳脑片
在细胞膜的电兴奋过程中,脂质层膜电容的反应是被动的,其电流电压曲线是线性的。日本可升级膜片钳报价
膜片钳技术的建立1.抛光及填充好玻璃管微电极,并将它固定在电极夹持器中。2.通过一个与电极夹持器连接的导管给微电极内一个压力,一直到电极浸入记录槽溶液中。3.当电极浸没在溶液中时给电极一个测定脉冲(命令电压,如5-10ms,10mV)读出电流,按照欧姆定律计算电阻。4.通过膜片钳放大器的控制键将微电极前列的连接电位(junctionpotentials)调至零位,这种电位差是由于电极内填充溶液与浸浴液不同离子成分的迁移造成的。5.用微操纵器将微电极前列在直视下靠近要记录的细胞表面,并观察电流的变化,直至阻抗达到1GΩ以上形成"干兆封接"6.调整静息膜电位到期望的钳位电压的水平,使放大器从"搜寻"转到"电压钳"时细胞不至于钳位到零。日本可升级膜片钳报价