DDR测试
在进行接收容限测试时,需要用到多通道的误码仪产生带压力的DQ、DQS等信号。测试中被测件工作在环回模式,DQ引脚接收的数据经被测件转发并通过LBD引脚输出到误码仪的误码检测端口。在测试前需要用示波器对误码仪输出的信号进行校准,如DQS与DQ的时延校准、信号幅度校准、DCD与RJ抖动校准、压力眼校准、均衡校准等。图5.21展示了一整套DDR5接收端容限测试的环境。
克劳德高速数字信号测试实验室
地址:深圳市南山区南头街道中祥路8号君翔达大厦A栋2楼H区 DDR工作原理与时序问题;山西DDR测试DDR测试
DDR测试
由于DDR4的数据速率会达到3.2GT/s以上,DDR5的数据速率更高,所以对逻辑分析仪的要求也很高,需要状态采样时钟支持1.6GHz以上且在双采样模式下支持3.2Gbps以上的数据速率。图5.22是基于高速逻辑分析仪的DDR4/5协议测试系统。图中是通过DIMM条的适配器夹具把上百路信号引到逻辑分析仪,相应的适配器要经过严格测试,确保在其标称的速率下不会因为信号质量问题对协议测试结果造成影响。目前的逻辑分析仪可以支持4Gbps以上信号的采集和分析。 北京DDR测试产品介绍DDR测试USB眼图测试设备?
实际的电源完整性是相当复杂的,其中要考虑到IC的封装、仿真信号的切换频率和PCB耗电网络。对于PCB设计来说,目标阻抗的去耦设计是相对来说比较简单的,也是比较实际的解决方案。在DDR的设计上有三类电源,它们是VDD、VTT和Vref。VDD的容差要求是5%,而其瞬间电流从Idd2到Idd7大小不同,详细在JEDEC里有叙述。通过电源层的平面电容和用的一定数量的去耦电容,可以做到电源完整性,其中去耦电容从10nF到10uF大小不同,共有10个左右。另外,表贴电容合适,它具有更小的焊接阻抗。Vref要求更加严格的容差性,但是它承载着比较小的电流。显然,它只需要很窄的走线,且通过一两个去耦电容就可以达到目标阻抗的要求。由于Vref相当重要,所以去耦电容的摆放尽量靠近器件的管脚。然而,对VTT的布线是具有相当大的挑战性,因为它不只要有严格的容差性,而且还有很大的瞬间电流,不过此电流的大小可以很容易的就计算出来。终,可以通过增加去耦电容来实现它的目标阻抗匹配。在4层板的PCB里,层之间的间距比较大,从而失去其电源层间的电容优势,所以,去耦电容的数量将增加,尤其是小于10nF的高频电容。详细的计算和仿真可以通过EDA工具来实现。
7.时序对于时序的计算和分析在一些相关文献里有详细的介绍,下面列出需要设置和分析的8个方面:1)写建立分析:DQvs.DQS2)写保持分析:DQvs.DQS3)读建立分析:DQvs.DQS4)读保持分析:DQvs.DQS5)写建立分析:DQSvs.CLK6)写保持分析:DQSvs.CLK7)写建立分析:ADDR/CMD/CNTRLvs.CLK8)写保持分析:ADDR/CMD/CNTRLvs.CLK
一个针对写建立(WriteSetup)分析的例子。表中的一些数据需要从控制器和存储器厂家获取,段”Interconnect”的数据是取之于SI仿真工具。对于DDR2上面所有的8项都是需要分析的,而对于DDR3,5项和6项不需要考虑。在PCB设计时,长度方面的容差必须要保证totalmargin是正的。 DDR规范里关于信号建立;
如何测试DDR?
DDR测试有具有不同要求的两个方面:芯片级测试DDR芯片测试既在初期晶片阶段也在封装阶段进行。采用的测试仪通常是内存自动测试设备,其价值一般在数百万美元以上。测试仪的部分是一台可编程的高分辨信号发生器。测试工程师通过编程来模拟实际工作环境;另外,他也可以对计时脉冲边沿前后进行微调来寻找平衡点。自动测试仪(ATE)系统也存在缺陷。它产生的任意波形数量受制于其本身的后备映象随机内存和算法生成程序。由于映象随机内存深度的局限性,使波形只能在自己的循环内重复。因为DDR带宽和速度是普通SDR的二倍,所以波形变化也应是其二倍。因此,测试仪的映象随机内存容量会很快被消耗殆尽。为此,要保证一定的测试分辨率,就必须增大测试仪的内存。建立测试头也是一个棘手的问题。因为DDR内存的数据读取窗口有1—2ns,所以管脚驱动器的上升和下降时间非常关键。为保证在数据眼中心进行信号转换,需要较好的管脚驱动器转向速度。在频率为266MHz时,开始出现传输线反射。设计工程师发现在设计测试平台时必须遵循直线律。为保证信号的统一性,必须对测试头布局进行传输线模拟。管脚驱动器强度必须能比较大限度降低高频信号反射。 DDR4信号质量自动测试软件报告;山西DDR测试DDR测试
主流DDR内存标准的比较;山西DDR测试DDR测试
2.PCB的叠层(stackup)和阻抗对于一块受PCB层数约束的基板(如4层板)来说,其所有的信号线只能走在TOP和BOTTOM层,中间的两层,其中一层为GND平面层,而另一层为VDD平面层,Vtt和Vref在VDD平面层布线。而当使用6层来走线时,设计一种拓扑结构变得更加容易,同时由于Power层和GND层的间距变小了,从而提高了电源完整性。互联通道的另一参数阻抗,在DDR2的设计时必须是恒定连续的,单端走线的阻抗匹配电阻50Ohms必须被用到所有的单端信号上,且做到阻抗匹配,而对于差分信号,100Ohms的终端阻抗匹配电阻必须被用到所有的差分信号终端,比如CLOCK和DQS信号。另外,所有的匹配电阻必须上拉到VTT,且保持50Ohms,ODT的设置也必须保持在50Ohms。在DDR3的设计时,单端信号的终端匹配电阻在40和60Ohms之间可选择的被设计到ADDR/CMD/CNTRL信号线上,这已经被证明有很多的优点。而且,上拉到VTT的终端匹配电阻根据SI仿真的结果的走线阻抗,电阻值可能需要做出不同的选择,通常其电阻值在30-70Ohms之间。而差分信号的阻抗匹配电阻始终在100Ohms。山西DDR测试DDR测试
DDR5发送端测试随着信号速率的提升,SerDes技术开始在DDR5中采用,如会采用DFE均衡器改善接收误码率,另外DDR总线在发展过程中引入训练机制,不再是简单的要求信号间的建立保持时间,在DDR4的时始使用眼图的概念,在DDR5时代,引入抖动成分概念,从成因上区分解Rj,Dj等,对芯片或系统设计提供更具体的依据;在抖动的参数分析上,也增加了一些新的抖动定义参数,并有严苛的测量指标。针对这些要求,提供了完整的解决方案。UXR示波器,配合D9050DDRC发射机一致性软件,及高阻RC探头MX0023A,及Interposer,可以实现对DDR信号的精确表征。DDR存储器信号和协议测试;PCI-...