光学成像技术与分子生物学技术的结合为研究上述科学问题提供了条件与可能。因此,在现代分子生物学技术基础上,急需发展新的成像技术。在动物体内,如何实现基因表达及蛋白质之间相五作用的实时在体成像监测是当前迫切需要解决的重大科学技术问题。这是也生物学、信息科学(光学)和基础临床医学等学科共同感兴趣的重大问题。对这-一一科学问题的研究不仅有助于阐明生命活动的基本规律、认识疾病的发展规律,而且对创新药物研究、药物疗效评价以及发展疾病早期诊断技术等产生重大影响。高精度,低光损,多光子显微镜为科研提供准确依据。美国在体多光子显微镜焦点激发
作为一个多学科、知识密集型和资金密集型的高科技产业,多光子显微镜涉及医学、生物学、化学、物理学、电子学、工程学等多个学科。其生产工艺相对复杂,进入门槛较高。它是衡量一个国家制造业和高科技发展水平的重要标准之一。在过去的五年里,多光子显微镜的市场是集中的。由于投产成本高,技术难度大,目前涌现的新企业并不多。显微镜作为传统的高科技产业,并没有被其他技术颠覆,而是一直在不断融合发展相关技术,在医疗等精密检测领域发挥更大的作用。显微镜的商业化发展已进入成熟阶段,主要需求来自教学、生命科学研究和精密测试等。全球市场呈现温和增长趋势。而显微镜产品(如多光子显微镜、电子显微镜)正在刺激市场需求,多光子显微镜市场发展潜力巨大。美国共聚焦多光子显微镜三维分辨率更多关于多光子显微镜的信息有哪些?
Ca2+是重要的第二信使,对于调节细胞的生理反应具有重要的作用,开发和利用双光子荧光显微成像技术对Ca2+荧光信号进行观测,可以从某些方面对有机体或细胞的变化机制进行分析,具有重要的意义。利用双光子荧光显微成像技术可以观察细胞内用荧光探针标记的Ca2*的时间和空间的荧光图像的变化,还可以观察细胞某一层面或局部的(Ca2+)荧光图像和变化。通过对单细胞的研究发现,Ca2+不仅在细胞局部区域间的分布是不均匀的,而且细胞内各局部区域的不同深度或层次间也存在不同程度的Ca2+梯差即所谓的空间Ca2梯差。
快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。远程聚焦也是一种实现3D成像的手段,如图2所示。在LSU模块中,扫描振镜进行横向扫描,ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统需要依赖于远程聚焦、SLM和可调电动透镜。精确测量细胞结构与功能,多光子显微镜技术走在科技前沿。
现代分子生物学技术的迅速发展和科技的进步,特别是随着后基因组时代的到来,人们已经能够根据需要建立各种细胞模型,为在体研究基因表达规律、分子间的相互作用、细胞的增殖、细胞信号转导、诱导分化、细胞凋亡以及新的血管生成等提供了良好的生物学条件。然而,尽管人们利用现有的分子生物学方法,已经对基因表达和蛋白质之间的相互作用进行了深入、细致的研究,但仍然不能实现对蛋白质和基因活动的实时、动态监测。在细胞的生理过程中,基因、尤其是蛋白质的表达、修饰和相万作用往往发生可逆的、动态的变化。目前的分子生物学方法还不能捕获到蛋白质和基因的这些变化,但获取这些信息对与研究基因的表达和蛋白质之间的相互作用又至关重要。因此,发展能用于、动态、实时、连续监测蛋白质和基因活动的方法是非常必要的。多光子显微镜在生物医学研究中有广泛的应用,可以观察细胞内的亚细胞结构、蛋白质分布、细胞活动等。美国共聚焦多光子显微镜三维分辨率
由于双光子激发的特性,它可以获得比传统显微镜更高的分辨率。美国在体多光子显微镜焦点激发
多光子显微镜对成像深度的改善利用红光或红外光激发,光散射小(小粒子的散射与波长的四次方的成反比)。不需要***,能更多收集来自成像截面的散射光子。***不能区分由离焦区域或焦点区发射出的散射光子,多光子在深层成像信噪比好。单光子激发所用的紫外或可见光在光束到达焦平面之前易被样品吸收而衰减,不易对深层激发。多光子荧光成像的特点。深度成像∶与共聚焦相比能更好地对厚散射物质成像。信噪比∶多光子吸收采用的波长是单光子吸收的2倍以上,所以显微试样中的瑞利散射更小,荧光测定的信噪比更高。观察活细胞∶离子测量(i.e.Ca2+),GFP,发育生物学等—减少了光毒性和光漂白,能对细胞长时间观察。美国在体多光子显微镜焦点激发