人类原代干细胞是另一种公认的难以转染的细胞类型,转染这种细胞类型的比较大挑战仍然是效率低和细胞活力低。2015年,王等报道了Lipofectamine 2000和XtremeGENE HP等转染试剂在人牙周韧带干细胞中的转染效率非常低(<6%),而阳性对照慢病毒载体的转染效率约为95%。与同一研究中采用的磁辅助转染技术相比,后者表现出更高的转染效率(~11%)和更低的毒性。在另一项涉及人骨髓间充质干细胞(hBM-MSC)的研究中,Lipofectamine LTX被证明比TransIT-2020、Lipofectamine 3000和聚乙烯亚胺(PEI)等其他试剂产生比较好的转染效率(至少高出三倍),但细胞存活率较低(<50%)。相比之下,使用TransIT-2020试剂可能会获得更好的结果,该试剂的效率约为30%,细胞回收率高达90%,细胞干性约为95%。另一个难以转染干细胞的例子是诱导多能干细胞(iPSCs)。在一项比较转染人类ipsc衍生心肌细胞(hiPSC-CMSs)的不同非病毒方法的研究中,与其他试剂(Lipofectamine 3000、Lipofectamine 2000和基于pei的非脂质体试剂TransporterTM5和PEI25)相比,Lipofectamine STEM显示出更高的转染效率(高达32%),其效率低于20%。转染时推荐使用血清减少或无血清培养基包括阳离子转染试剂,如Lipofectamine、HiperFect 和EndofectinMax。湖北转染试剂便宜
在转染实验中使用对照对于确定所使用的转染试剂和核酸的效果和效率至关重要。通常,质粒转染和寡核苷酸转染实验都需要阳性对照、阴性对照、未转染对照和模拟转染对照。阳性对照是先前已被证明对转染实验产生已知影响的DNA或RNA,例如影响特定下游遗传靶点的表达。在转染工作的初始阶段,需要一个阳性对照来建立一个优化的转染方案,之后,阳性对照可以作为参考,与实验组进行比较。另一方面,阴性对照用于确认宿主细胞中预期的基因表达变化是否归因于转染而不是其他原因。在质粒DNA转染中,阴性对照可以是缺乏DNA和转染载体的反应,或者两者都没有,只有宿主细胞。在小RNA转染中,阴性对照包含一个非同源序列,该序列通常是一个与靶序列具有相同核苷酸长度和组成但与任何已知哺乳动物基因不同源的打乱序列。未转染的对照包括不含转染试剂和核酸的细胞培养,作为宿主细胞基本信息的对照,包括活力、表型,更重要的是,不受转染影响的靶基因的基线表达水平。模拟转染是指不含遗传靶标或核酸的转染,可以评估转染试剂(如背景自荧光噪声)产生的影响。在质粒转染实验中,推荐使用空质粒对照作为模拟转染对照。湖北转染试剂便宜PHP是由天然来源的羟基脯氨酸(如胶原蛋白、明胶和其他蛋白质)制成的,是一个用作基因载体的聚酯。
在大肠杆菌细胞中复制的质粒通常含有二核苷酸频率为1:16的CpG基序,这与细菌DNA中的频率相似。CpG免疫刺激的两个应用领域是疫苗接种和肿瘤免疫***。许多出版物表明,免疫刺激CpG基序可以用于疫苗接种策略,包括给药编码抗原的pDNA载体或给药抗原本身。通过不同的给药途径给药含CpG的脂丛可以抑制**生长。这些结果来源于使用表达促炎细胞因子(如IL-12)的转基因或甚至不含外源转基因的载体的研究。**的生长抑制似乎是由CpG基序引起的,因为这些序列的甲基化否定了这种作用。虽然有***效果,但含CpG基序对**生长的抑制的确切性质尚不清楚。产生的细胞因子对肿瘤细胞和**脉管系统都有多重作用。一个恰当的例子是IL-12的能力,在响应含CpG基序时产生,引发抗血管生成反应。其他细胞因子,如IFN-g(自身为CpG诱导的细胞因子)诱导的细胞因子,即IP10和Mig,也能够具有抗血管生成特性。
共转染是将一种以上类型的核酸引入真核细胞的过程。组合的一些例子包括多个质粒DNA ,siRNA和质粒DNA ,以及多个miRNAs进入同一个细胞。通常,多质粒DNA共转染的目的是将一种以上的外源基因导入宿主细胞。其应用之一是生产由几种质粒DNA成分组成的合成病毒或杂交载体。一个例子是在HEK293细胞系中,用转移、包膜和包装载体等几种质粒载体生成慢病毒。此外,多个质粒DNA的共转染也可以应用于蛋白质-蛋白质相互作用(PPI)研究,以研究一种蛋白质与另一种蛋白质之间的关系。化学转染的效率可能取决于几个因素,如使用的试剂类型、靶细胞的来源和性质,以及选择的DNA与试剂比例。
基于非病毒的转染方法可以进一步分为物理/机械方法和化学方法。常用的物理/机械转染方法包括电穿孔、声孔、磁***、基因显微注射和激光照射。电穿孔是一种常用的物理转染方法,利用电压瞬间增加细胞膜通透性,允许外来核酸进入。这种方法通常用于转染原代细胞、干细胞和B细胞系等难以转染的细胞。然而,使用高压可能导致细胞坏死、凋亡和长久性细胞损伤。超声辅助转染或超声穿孔涉及使用微泡技术在细胞膜上制造孔,以减轻遗传物质的转移,而激光照射辅助转染使用激光束在质膜上制造小孔,允许外来遗传物质进入。与电穿孔一样,超声穿孔和激光辅助转染也有破坏细胞膜和不可逆细胞死亡的风险。相比之下,磁辅助转染,或使用磁力来帮助转移外来遗传物质的磁转染,似乎对生物的破坏性较尽管效率较低,但对宿主细胞的破坏较小。另一方面,基因显微注射涉及使用特定的针刺穿细胞,将所需的核酸注射到宿主细胞的细胞核中。然而,这项技术需要经过专门训练的人员或机器人系统,他们可以高精度地执行程序,以防止细胞损伤,因此在基因***等临床应用中具有重要价值。与物理或机械转染方法相比,化学转染涉及使用专门设计的化学品或化合物来帮助将外源核酸转移到宿主细胞中。用二乙基氨基乙基修饰,右旋糖酐链的酰胺化很容易被质子化,这使得它可以自组装成带负电荷核酸的纳米颗粒。重庆重庆转染试剂
作为一般指导原则,建议使用早期传代的细胞以获得良好的转染效率,特别是涉及原代或干细胞的转染。湖北转染试剂便宜
纳米颗粒的尺寸很小,但它们比其他颗粒具有更大的粘附表面,同时具有高稳定性。正因为如此,它们能够成功地穿过细胞膜,进入细胞,并与自然发生的细胞内途径结合,具有将特定颗粒带到预定目标位置的***准确性。由于纳米颗粒在细胞内运输和保护化合物方面具有巨大的潜力,可以避免酶的消化或储存在核内体中,因此纳米颗粒作为细胞过程成像的工具,作为将药物携带到细胞内的各种系统的一部分,或**终用于基因传递。纳米颗粒通过官能团和非共价键之间的特异性和非特异性键与核酸结合的特性类似于体内DNA和抑制蛋白之间的自然结合。在细胞内运输外源DNA的效率受到两个主要因素的限制:内吞作用,穿过细胞膜的方式,或适当的细胞受体***和内体屏障的破坏。研究表明,在细胞内,与荧光标记物连接的纳米颗粒聚集在靠近细胞核的溶酶体中,但它们不会穿过核膜。事实上,这并没有干扰特定基因结构编码的蛋白质的表达,这证明了纳米颗粒可以参与内体途径,并可以通过细胞质将DNA运输到细胞核。不同种类的化学物质有不同的纳米粒子,它们具有不同的性状、化学性质、物理性质和结构。湖北转染试剂便宜